2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第1頁
2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第2頁
2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第3頁
2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第4頁
2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省撫州市臨川區(qū)重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.點(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±22.下列計(jì)算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)33.等式成立的x的取值范圍在數(shù)軸上可表示為(

)A. B. C. D.4.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點(diǎn)分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°5.cos30°的相反數(shù)是()A. B. C. D.6.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.7.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.8.如圖所示,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:39.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.1010.計(jì)算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.611.已知反比例函數(shù)y=﹣,當(dāng)1<x<3時(shí),y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣212.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE是BC的垂直平分線,點(diǎn)E是垂足.若DC=2,AD=1,則BE的長為______.14.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P經(jīng)過點(diǎn)的路徑長為__.15.如圖,四邊形ABCD是菱形,☉O經(jīng)過點(diǎn)A,C,D,與BC相交于點(diǎn)E,連接AC,AE,若∠D=78°,則∠EAC=________°.16.如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.17.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

18.已知一個(gè)圓錐體的底面半徑為2,母線長為4,則它的側(cè)面展開圖面積是___.(結(jié)果保留π)三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.20.(6分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.21.(6分)已知:如圖,∠ABC,射線BC上一點(diǎn)D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.22.(8分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長.23.(8分)如圖,在四邊形中,為的中點(diǎn),于點(diǎn),,,,求的度數(shù).24.(10分)如圖所示,平行四邊形形ABCD中,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€(gè)條件使四邊形BEDF為菱形.25.(10分)如圖,點(diǎn)D是AB上一點(diǎn),E是AC的中點(diǎn),連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.26.(12分)某校園圖書館添置新書,用240元購進(jìn)一種科普書,同時(shí)用200元購進(jìn)一種文學(xué)書,由于科普書的單價(jià)比文學(xué)書的價(jià)格高出一半,因此,學(xué)校所購文學(xué)書比科普書多4本,求:(1)這兩種書的單價(jià).(2)若兩種書籍共買56本,總費(fèi)用不超過696元,則最多買科普書多少本?27.(12分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點(diǎn)C和點(diǎn)D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點(diǎn)C的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】

根據(jù)點(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【題目詳解】因?yàn)辄c(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【題目點(diǎn)撥】本題主要考查反比例函數(shù)圖象的上點(diǎn)的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點(diǎn)的特征.2、C【解題分析】

分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則逐一計(jì)算可得.【題目詳解】A、a2?a3=a5,此選項(xiàng)不符合題意;

B、a12÷a2=a10,此選項(xiàng)不符合題意;

C、(a2)3=a6,此選項(xiàng)符合題意;

D、(-a2)3=-a6,此選項(xiàng)不符合題意;

故選C.【題目點(diǎn)撥】本題主要考查冪的運(yùn)算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則.3、B【解題分析】

根據(jù)二次根式有意義的條件即可求出的范圍.【題目詳解】由題意可知:,解得:,故選:.【題目點(diǎn)撥】考查二次根式的意義,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件.4、D【解題分析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等計(jì)算即可.【題目詳解】因?yàn)閙∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【題目點(diǎn)撥】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯(cuò)角相等是解答本題的關(guān)鍵.5、C【解題分析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【題目詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【題目點(diǎn)撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個(gè)特殊角的三角函數(shù)值以及相反數(shù)的概念.6、A【解題分析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.7、D【解題分析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【題目詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【題目點(diǎn)撥】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個(gè)角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.8、A【解題分析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【題目詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點(diǎn)上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【題目點(diǎn)撥】本題考查的是圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.9、D【解題分析】

根據(jù)有理數(shù)乘法法則計(jì)算.【題目詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【題目點(diǎn)撥】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個(gè)不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;(4)幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0時(shí),積為0.10、A【解題分析】分析:根據(jù)有理數(shù)的除法法則計(jì)算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點(diǎn)睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.2除以任何一個(gè)不等于2的數(shù),都得2.11、D【解題分析】

根據(jù)反比例函數(shù)的性質(zhì)可以求得y的取值范圍,從而可以解答本題.【題目詳解】解:∵反比例函數(shù)y=﹣,∴在每個(gè)象限內(nèi),y隨x的增大而增大,∴當(dāng)1<x<3時(shí),y的取值范圍是﹣6<y<﹣1.故選D.【題目點(diǎn)撥】本題考查了反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的y的取值范圍,利用反比例函數(shù)的性質(zhì)解答.12、B【解題分析】

根據(jù)一次函數(shù)的性質(zhì),根據(jù)不等式組即可解決問題;【題目詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【題目點(diǎn)撥】本題考查一次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點(diǎn)睛:本題考查的是線段的垂直平分線的性質(zhì)、角平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.14、π.【解題分析】

由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點(diǎn)P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【題目詳解】:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,,

∴△ABE≌△CAF(SAS),

∴∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°-∠APE=120°.

∴當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,且∠AOB=120°,

又∵AB=6,

∴OA=2,

點(diǎn)P的路徑是l=,

故答案為.【題目點(diǎn)撥】本題考查了等邊三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,弧線長公式的運(yùn)用,解題的關(guān)鍵是證明三角形全等.15、1.【解題分析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°16、45【解題分析】

由四邊形ABCD為正方形及半徑相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等邊對等角得到兩對角相等,由四邊形ABFD的內(nèi)角和為360度,得到四個(gè)角之和為270,利用等量代換得到∠ABF+∠ADF=135°,進(jìn)而確定出∠1+∠2=45°,由∠EFD為三角形DEF的外角,利用外角性質(zhì)即可求出∠EFD的度數(shù).【題目詳解】∵正方形ABCD,AF,AB,AD為圓A半徑,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四邊形ABFD內(nèi)角和為360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°?90°=45°,∵∠EFD為△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案為45【題目點(diǎn)撥】此題考查了切線的性質(zhì),四邊形的內(nèi)角和,等腰三角形的性質(zhì),以及正方形的性質(zhì),熟練掌握性質(zhì)是解本題的關(guān)鍵.17、35°【解題分析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點(diǎn):圓周角定理.18、8π【解題分析】

根據(jù)圓錐的側(cè)面積=底面周長×母線長÷2公式即可求出.【題目詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側(cè)面積=4π×4÷2=8π.故答案為:8π.【題目點(diǎn)撥】靈活運(yùn)用圓的周長公式和扇形面積公式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)證明見解析.【解題分析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結(jié)論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進(jìn)而可得出結(jié)論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點(diǎn):相似三角形的判定與性質(zhì).20、(1)見解析;(2)見解析;【解題分析】

(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質(zhì),即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【題目詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.21、見解析.【解題分析】

根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【題目詳解】∵點(diǎn)P在∠ABC的平分線上,∴點(diǎn)P到∠ABC兩邊的距離相等(角平分線上的點(diǎn)到角的兩邊距離相等),∵點(diǎn)P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等),如圖所示:【題目點(diǎn)撥】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.22、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解題分析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【題目詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【題目點(diǎn)撥】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.23、【解題分析】

連接,根據(jù)線段垂直平分線的性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算即可.【題目詳解】連接,∵為的中點(diǎn),于點(diǎn),∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【題目點(diǎn)撥】本題考查的是線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.24、見解析【解題分析】

(1)根據(jù)平行四邊形的性質(zhì)可得AB∥DC,OB=OD,由平行線的性質(zhì)可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性質(zhì)可得EO=FO,根據(jù)對角線互相平分的四邊形是平行四邊形即可判定四邊形BEDF是平行四邊形;(2)添加EF⊥BD(本題添加的條件不唯一),根據(jù)對角線互相垂直的平行四邊形為菱形即可判定平行四邊形BEDF為菱形.【題目詳解】(1)∵四邊形ABCD是平行四邊形,O是BD的中點(diǎn),∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)EF⊥BD.∵四邊形BEDF是平行四邊形,∵EF⊥BD,∴平行四邊形BEDF是菱形.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)與判定、菱形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論