版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省泰安市岱岳區(qū)2024屆中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一個(gè)正方形花壇的面積為7m2,其邊長(zhǎng)為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<42.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°3.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:24.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.5.一個(gè)三角形框架模型的三邊長(zhǎng)分別為20厘米、30厘米、40厘米,木工要以一根長(zhǎng)為60厘米的木條為一邊,做一個(gè)與模型三角形相似的三角形,那么另兩條邊的木條長(zhǎng)度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米6.小明早上從家騎自行車去上學(xué),先走平路到達(dá)點(diǎn)A,再走上坡路到達(dá)點(diǎn)B,最后走下坡路到達(dá)學(xué)校,小明騎自行車所走的路程s(單位:千米)與他所用的時(shí)間t(單位:分鐘)的關(guān)系如圖所示,放學(xué)后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學(xué)時(shí)一致,下列說(shuō)法:①小明家距學(xué)校4千米;②小明上學(xué)所用的時(shí)間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學(xué)回家所用時(shí)間為15分鐘.其中正確的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7.在﹣3,0,4,這四個(gè)數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.8.如圖,立體圖形的俯視圖是A. B. C. D.9.如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④10.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計(jì)算兩個(gè)兩位數(shù)的積,這兩個(gè)數(shù)的十位上的數(shù)字相同,個(gè)位上的數(shù)字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發(fā)現(xiàn)上面每個(gè)數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個(gè)個(gè)位數(shù)字相乘的積作為結(jié)果的,請(qǐng)寫出一個(gè)符合上述規(guī)律的算式.(2)設(shè)其中一個(gè)數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,請(qǐng)用含a,b的算式表示這個(gè)規(guī)律.12.在函數(shù)y=x-4中,自變量x的取值范圍是_____.13.分解因式:2m2-8=_______________.14.如圖,這是由邊長(zhǎng)為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個(gè)圖形的周長(zhǎng)是___.15.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.16.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.17.我們定義:關(guān)于x的函數(shù)y=ax2+bx與y=bx2+ax(其中a≠b)叫做互為交換函數(shù).如y=3x2+4x與y=4x2+3x是互為交換函數(shù).如果函數(shù)y=2x2+bx與它的交換函數(shù)圖象頂點(diǎn)關(guān)于x軸對(duì)稱,那么b=_____.三、解答題(共7小題,滿分69分)18.(10分)中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:參加比賽的學(xué)生共有____名;在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級(jí)”的扇形的圓心角為____度;組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.19.(5分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長(zhǎng);(3)求sin∠EOB的值.20.(8分)無(wú)錫市新區(qū)某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為250元,每桶水的進(jìn)價(jià)是5元,規(guī)定銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)圖象如圖所示.(1)求日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系;(2)若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是多少?21.(10分)計(jì)算.22.(10分)拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.求此拋物線的解析式;已知點(diǎn)D在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D’的坐標(biāo);在(2)的條件下,連結(jié)BD,問(wèn)在x軸上是否存在點(diǎn)P,使,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.23.(12分)(問(wèn)題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.24.(14分)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?(3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬(wàn)元(a>0),市政府如何確定方案才能使費(fèi)用最少?
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】
先根據(jù)正方形的面積公式求邊長(zhǎng),再根據(jù)無(wú)理數(shù)的估算方法求取值范圍.【題目詳解】解:∵一個(gè)正方形花壇的面積為,其邊長(zhǎng)為,則a的取值范圍為:.故選:C.【題目點(diǎn)撥】此題重點(diǎn)考查學(xué)生對(duì)無(wú)理數(shù)的理解,會(huì)估算無(wú)理數(shù)的大小是解題的關(guān)鍵.2、A【解題分析】
根據(jù)對(duì)頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【題目詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【題目點(diǎn)撥】本題考查了平行線的性質(zhì),知道“兩直線平行,同旁內(nèi)角互補(bǔ)”是解題的關(guān)鍵.3、B【解題分析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B4、C【解題分析】
結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個(gè)扇形,底面展開是一個(gè)圓.【題目詳解】解:圓錐的展開圖是由一個(gè)扇形和一個(gè)圓形組成的圖形.故選C.【題目點(diǎn)撥】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問(wèn)題的關(guān)鍵.注意圓錐的平面展開圖是一個(gè)扇形和一個(gè)圓組成.5、C【解題分析】當(dāng)60cm的木條與20cm是對(duì)應(yīng)邊時(shí),那么另兩條邊的木條長(zhǎng)度分別為90cm與120cm;當(dāng)60cm的木條與30cm是對(duì)應(yīng)邊時(shí),那么另兩條邊的木條長(zhǎng)度分別為40cm與80cm;當(dāng)60cm的木條與40cm是對(duì)應(yīng)邊時(shí),那么另兩條邊的木條長(zhǎng)度分別為30cm與45cm;所以A、B、D選項(xiàng)不符合題意,C選項(xiàng)符合題意,故選C.6、C【解題分析】
從開始到A是平路,是1千米,用了3分鐘,則從學(xué)校到家門口走平路仍用3分鐘,根據(jù)圖象求得上坡(AB段)、下坡(B到學(xué)校段)的路程與速度,利用路程除以速度求得每段所用的時(shí)間,相加即可求解.【題目詳解】解:①小明家距學(xué)校4千米,正確;②小明上學(xué)所用的時(shí)間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯(cuò)誤;④小明放學(xué)回家所用時(shí)間為3+2+10=15分鐘,正確;故選:C.【題目點(diǎn)撥】本題考查利用函數(shù)的圖象解決實(shí)際問(wèn)題,正確理解函數(shù)圖象橫縱坐標(biāo)表示的意義,理解問(wèn)題的過(guò)程,就能夠通過(guò)圖象得到函數(shù)問(wèn)題的相應(yīng)解決.需注意計(jì)算單位的統(tǒng)一.7、C【解題分析】試題分析:根據(jù)實(shí)數(shù)的大小比較法則,正數(shù)大于0,0大于負(fù)數(shù),兩個(gè)負(fù)數(shù)相比,絕對(duì)值大的反而?。虼?,在﹣3,0,1,這四個(gè)數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.8、C【解題分析】試題分析:立體圖形的俯視圖是C.故選C.考點(diǎn):簡(jiǎn)單組合體的三視圖.9、A【解題分析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點(diǎn)睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考選擇題中的壓軸題.10、B【解題分析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對(duì)角線把矩形分成了四個(gè)面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、(1)十位和個(gè)位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解題分析】分析:(1)、根據(jù)題意得出其一般性的規(guī)律,從而得出答案;(2)、利用代數(shù)式表示出其一般規(guī)律得出答案.詳解:(1)由已知等式知,每個(gè)數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個(gè)個(gè)位數(shù)字相乘的積作為結(jié)果的十位和個(gè)位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點(diǎn)睛:本題主要考查的是規(guī)律的發(fā)現(xiàn)與整理,屬于基礎(chǔ)題型.找出一般性的規(guī)律是解決這個(gè)問(wèn)題的關(guān)鍵.12、x≥4【解題分析】試題分析:二次根式有意義的條件:二次根號(hào)下的數(shù)為非負(fù)數(shù),二次根式才有意義.由題意得,.考點(diǎn):二次根式有意義的條件點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握二次根式有意義的條件,即可完成.13、2(m+2)(m-2)【解題分析】
先提取公因式2,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解因式.【題目詳解】2m2-8,=2(m2-4),=2(m+2)(m-2)【題目點(diǎn)撥】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對(duì)多項(xiàng)式進(jìn)行因式分解,一般來(lái)說(shuō),如果可以先提取公因式的要先提取公因式,再考慮運(yùn)用公式法,十字相乘等方法分解.14、2n+1【解題分析】觀察擺放的一系列圖形,可得到依次的周長(zhǎng)分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫出第n個(gè)圖形的周長(zhǎng).解:由已知一系列圖形觀察圖形依次的周長(zhǎng)分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個(gè)圖形的周長(zhǎng)為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問(wèn)題,關(guān)鍵是通過(guò)觀察分析得出規(guī)律,根據(jù)規(guī)律求解.15、1.【解題分析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點(diǎn):等腰直角三角形;平行線的性質(zhì).16、x≥【解題分析】
根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【題目詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【題目點(diǎn)撥】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.17、﹣1【解題分析】
根據(jù)題意可以得到交換函數(shù),由頂點(diǎn)關(guān)于x軸對(duì)稱,從而得到關(guān)于b的方程,可以解答本題.【題目詳解】由題意函數(shù)y=1x1+bx的交換函數(shù)為y=bx1+1x.∵y=1x1+bx=,y=bx1+1x=,函數(shù)y=1x1+bx與它的交換函數(shù)圖象頂點(diǎn)關(guān)于x軸對(duì)稱,∴﹣=﹣且,解得:b=﹣1.故答案為﹣1.【題目點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì).理解交換函數(shù)的意義是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)20;(2)40,1;(3).【解題分析】試題分析:(1)根據(jù)等級(jí)為A的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)根據(jù)D級(jí)的人數(shù)求得D等級(jí)扇形圓心角的度數(shù)和m的值;(3)列表得出所有等可能的情況數(shù),找出一男一女的情況數(shù),即可求出所求的概率.試題解析:解:(1)根據(jù)題意得:3÷15%=20(人),故答案為20;(2)C級(jí)所占的百分比為×100%=40%,表示“D等級(jí)”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結(jié)果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.19、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解題分析】
(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;
(3)過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過(guò)作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【題目詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【題目點(diǎn)撥】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握?qǐng)A心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).20、(1)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【解題分析】
(1)設(shè)日均銷售p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為:p=kx+b(k≠0),把(7,500),(12,250)代入,得到關(guān)于k,b的方程組,解方程組即可;(2)設(shè)銷售單價(jià)應(yīng)定為x元,根據(jù)題意得,(x-5)?p-250=1350,由(1)得到p=-50x+850,于是有(x-5)?(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,滿足7≤x≤12的x的值為所求;【題目詳解】(1)設(shè)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=kx+b,根據(jù)題意得,解得k=﹣50,b=850,所以日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)根據(jù)題意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合題意,舍去),∵銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,∴x=13不合題意,答:若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【題目點(diǎn)撥】本題考查了一元二次方程及一次函數(shù)的應(yīng)用,解題的關(guān)鍵是通過(guò)題目和圖象弄清題意,并列出方程或一次函數(shù),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題.21、【解題分析】分析:先計(jì)算,再做除法,結(jié)果化為整式或最簡(jiǎn)分式.詳解:.點(diǎn)睛:本題考查了分式的混合運(yùn)算.解題過(guò)程中注意運(yùn)算順序.解決本題亦可先把除法轉(zhuǎn)化成乘法,利用乘法對(duì)加法的分配律后再求和.22、(1)(2)(0,-1)(3)(1,0)(9,0)【解題分析】
(1)將A(?1,0)、C(0,?3)兩點(diǎn)坐標(biāo)代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點(diǎn)D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對(duì)稱性求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D'的坐標(biāo);(3)分兩種情形①過(guò)點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過(guò)點(diǎn)C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問(wèn)題.【題目詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點(diǎn)D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點(diǎn)D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D'(0,?1);(3)存在.滿足條件的點(diǎn)P有兩個(gè).①過(guò)點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過(guò)點(diǎn)C,∴直線CP的解析式為y=3x?3,∴點(diǎn)P坐標(biāo)(1,0),②連接BD′,過(guò)點(diǎn)C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對(duì)稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過(guò)點(diǎn)C,∴直線CP′解析式為,∴P′坐標(biāo)為(9,0),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(1,0)或(9,0).【題目點(diǎn)撥】本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對(duì)稱性,直線BC的特殊性求點(diǎn)的坐標(biāo),學(xué)會(huì)分類討論,不能漏解.23、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解題分析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【題目詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問(wèn)題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)童話課件教學(xué)課件
- 眉毛設(shè)計(jì)課件教學(xué)課件
- 2024大型港口碼頭排水合同
- 2024年度技術(shù)轉(zhuǎn)讓合同:技術(shù)資料交付與技術(shù)支持期限
- 2024定制家具合同范本
- 2024義齒加工商與牙科診所之間的定制金屬義齒合同
- 2024崗位聘用合同不續(xù)簽崗位聘用合同
- 2024年度餐廳食材供應(yīng)商采購(gòu)合同
- 骨科課件介紹教學(xué)課件
- 2024年婚禮車輛租賃特別合同
- 郭維淮平樂(lè)正骨
- 課程設(shè)計(jì)——夾套反應(yīng)釜
- 調(diào)節(jié)池施工方案范文
- 專項(xiàng)施工方案編制依據(jù)
- 正比例函數(shù)的圖象與性質(zhì)說(shuō)課稿
- 施工單位履約后評(píng)價(jià)報(bào)告(共2頁(yè))
- 《生活中的度量衡》PPT課件.ppt
- 趣味數(shù)學(xué)推理小故事PPT精品文檔
- Excel支票打印模板2021
- 《危險(xiǎn)游戲莫玩?!稰PT課件.ppt
- 自-銑削用量進(jìn)給量進(jìn)給速度(精編版)
評(píng)論
0/150
提交評(píng)論