版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆甘肅省民樂縣第二中學中考數(shù)學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將△ABC繞點C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)2.納米是一種長度單位,1納米=10-9米,已知某種植物花粉的直徑約為35000納米,那么用科學記數(shù)法表示該種花粉的直徑為()A.米 B.米 C.米 D.米3.如圖是幾何體的俯視圖,所表示數(shù)字為該位置小正方體的個數(shù),則該幾何體的正視圖是()A. B. C. D.4.周末小麗從家里出發(fā)騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米5.有理數(shù)a,b在數(shù)軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④6.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐7.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.8.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.9.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.1010.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠1二、填空題(共7小題,每小題3分,滿分21分)11.若,,則的值為________.12.如圖,ABCD是菱形,AC是對角線,點E是AB的中點,過點E作對角線AC的垂線,垂足是點M,交AD邊于點F,連結DM.若∠BAD=120°,AE=2,則DM=__.13.如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,……按此作法進行去,點Bn的縱坐標為(n為正整數(shù)).14.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.15.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉(zhuǎn),得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.16.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.17.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數(shù)法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.19.(5分)化簡:(x+7)(x-6)-(x-2)(x+1)20.(8分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.21.(10分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉(zhuǎn)α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當點G落在線段BC上時,求點B經(jīng)過的路徑長.22.(10分)某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調(diào)查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結果繪制的不完整統(tǒng)計表:節(jié)目代號ABCDE節(jié)目類型新聞體育動畫娛樂戲曲喜愛人數(shù)1230m549請你根據(jù)以上的信息,回答下列問題:(1)被調(diào)查學生的總數(shù)為人,統(tǒng)計表中m的值為.扇形統(tǒng)計圖中n的值為;(2)被調(diào)查學生中,最喜愛電視節(jié)目的“眾數(shù)”;(3)該校共有2000名學生,根據(jù)調(diào)查結果,估計該校最喜愛新聞節(jié)目的學生人數(shù).23.(12分)如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).解:過點A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性質(zhì))即:BH=又∵(所作)∴AH為線段的垂直平分線∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)∴(等邊對等角)24.(14分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達,現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現(xiàn)在從A地到達B地可比原來少走多少路程?(以上兩問中的結果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
設點A的坐標是(x,y),根據(jù)旋轉(zhuǎn)變換的對應點關于旋轉(zhuǎn)中心對稱,再根據(jù)中點公式列式求解即可.【題目詳解】根據(jù)題意,點A、A′關于點C對稱,
設點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【題目點撥】本題考查了利用旋轉(zhuǎn)進行坐標與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點A、A′關于點C成中心對稱是解題的關鍵2、C【解題分析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】35000納米=35000×10-9米=3.5×10-5米.故選C.【題目點撥】此題主要考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、B【解題分析】
根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面看得到的圖形即可.【題目詳解】解:主視圖,如圖所示:.故選B.【題目點撥】本題考查由三視圖判斷幾何體;簡單組合體的三視圖.用到的知識點為:主視圖是從物體的正面看得到的圖形;看到的正方體的個數(shù)為該方向最多的正方體的個數(shù).4、C【解題分析】解:A.小麗從家到達公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.5、B【解題分析】分析:本題是考察數(shù)軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.6、D【解題分析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【題目詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【題目點撥】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.7、B【解題分析】
將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【題目詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【題目點撥】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.8、A【解題分析】
列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【題目詳解】列表如下:
紅
紅
紅
綠
綠
紅
﹣﹣﹣
(紅,紅)
(紅,紅)
(綠,紅)
(綠,綠)
紅
(紅,紅)
﹣﹣﹣
(紅,紅)
(綠,紅)
(綠,紅)
紅
(紅,紅)
(紅,紅)
﹣﹣﹣
(綠,紅)
(綠,紅)
綠
(紅,綠)
(紅,綠)
(紅,綠)
﹣﹣﹣
(綠,綠)
綠
(紅,綠)
(紅,綠)
(紅,綠)
(綠,綠)
﹣﹣﹣
∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.9、D【解題分析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【題目詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【題目點撥】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關鍵.10、D【解題分析】
先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【題目詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【題目點撥】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內(nèi)錯角相等,同旁內(nèi)角互補.二、填空題(共7小題,每小題3分,滿分21分)11、-.【解題分析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.12、.【解題分析】
作輔助線,構建直角△DMN,先根據(jù)菱形的性質(zhì)得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計算DM的長.【題目詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【題目點撥】本題主要考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理及直角三角形30度角的性質(zhì),熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.13、.【解題分析】尋找規(guī)律:由直線y=x的性質(zhì)可知,∵B2,B3,…,Bn是直線y=x上的點,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵點A1坐標為(1,0),∴OA1=1.∴,即點Bn的縱坐標為.14、20%.【解題分析】試題分析:根據(jù)原價為100元,連續(xù)兩次漲價x后,現(xiàn)價為144元,根據(jù)增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.15、3【解題分析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)知AB=AE,在直角三角形ADE中根據(jù)勾股定理求得AE長即可得.【題目詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【題目點撥】本題考查矩形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),熟知旋轉(zhuǎn)前后哪些線段是相等的是解題的關鍵.16、55.【解題分析】
試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關系.17、4.4×1【解題分析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2);(3)1.【解題分析】
(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【題目詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.19、2x-40.【解題分析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【題目詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.20、(1)45;(m,﹣m);(2)相似;(3)①;②.【解題分析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數(shù)綜合題;2.壓軸題;3.探究型;4.最值問題.21、(1)見解析;(2)B點經(jīng)過的路徑長為π.【解題分析】
(1)、連接AH,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出AB=AE,∠ABH=∠AEH=90°,根據(jù)AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據(jù)題意得出∠EAB的度數(shù),然后根據(jù)弧長的計算公式得出答案.【題目詳解】(1)、證明:如圖1中,連接AH,由旋轉(zhuǎn)可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋轉(zhuǎn)可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的長為=π,即B點經(jīng)過的路徑長為π.【題目點撥】本題主要考查的是旋轉(zhuǎn)圖形的性質(zhì)以及扇形的弧長計算公式,屬于中等難度的題型.明白旋轉(zhuǎn)圖形的性質(zhì)是解決這個問題的關鍵.22、(1)150;45,36,(2)娛樂(3)1【解題分析】
(1)由“體育”的人數(shù)及其所占百分比可得總人數(shù),用總人數(shù)減去其它節(jié)目的人數(shù)即可得求得動畫的人數(shù)m,用娛樂的人數(shù)除以總人數(shù)即可得n的值;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總人數(shù)乘以樣本中喜愛新聞節(jié)目的人數(shù)所占比例.【題目詳解】解:(1)被調(diào)查的學生總數(shù)為30÷20%=150(人),m=150?(12+30+54+9)=45,n%=×100%=36%
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度123法律APP下載與法律服務拓展合同2篇
- 服裝店面料知識培訓課件
- 2024酒吧勞動合同范本
- 機型專業(yè)知識培訓課件
- 【大學課件】國際貿(mào)易International Trade(英文課件)
- 高效任務分配的總結與反思計劃
- 服務內(nèi)容2024年度網(wǎng)絡服務合同
- 2024有關保潔合同范本
- 酒吧衛(wèi)生管理規(guī)范
- 商務禮儀初階訓練模板
- 家禽常用原料代謝能估測表
- 古代詩歌鑒賞思想內(nèi)容ppt
- 初一上學期期末測試卷英語
- 上海沃陸變頻器VL600型變頻器說明書概要
- 2023年高考物理一輪復習:拋體運動與圓周運動(附答案解析)
- VRV空調(diào)技術要求和質(zhì)量標準
- Q∕GDW 10721-2020 電力通信現(xiàn)場標準化作業(yè)規(guī)范
- 公安警察工作匯報PPT模板課件
- 直腸癌個案護理范文結腸癌個案護理.doc
- 污水處理中常用的專業(yè)術語
- 石英砂過濾器說明書
評論
0/150
提交評論