版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市福建師范大泉州附屬中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.2.現(xiàn)有三張背面完全相同的卡片,正面分別標(biāo)有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機(jī)抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.3.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα4.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐5.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a26.如圖,四邊形ABCD是菱形,對角線AC,BD交于點(diǎn)O,,,于點(diǎn)H,且DH與AC交于G,則OG長度為A. B. C. D.7.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.48.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動到點(diǎn)B時停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是()A. B. C. D.9.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定10.關(guān)于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<0二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點(diǎn)A,B,C,則ac的值是________.12.如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.13.如圖,用10m長的鐵絲網(wǎng)圍成一個一面靠墻的矩形養(yǎng)殖場,其養(yǎng)殖場的最大面積________m1.14.如圖,PA,PB分別為的切線,切點(diǎn)分別為A、B,,則______.15.如圖,反比例函數(shù)y=的圖象上,點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一支于點(diǎn)B,以AB為斜邊作等腰直角△ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP,在點(diǎn)A運(yùn)動過程中,當(dāng)BP平分∠ABC時,點(diǎn)A的坐標(biāo)為_____.16.如圖,正方形ABCD的邊長為,點(diǎn)E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點(diǎn)F,則EF的長是__________.三、解答題(共8題,共72分)17.(8分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.18.(8分)如圖,在Rt△ABC中,,點(diǎn)在邊上,⊥,點(diǎn)為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.19.(8分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進(jìn)校園”活動,某校團(tuán)委組織八年級100名學(xué)生進(jìn)行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進(jìn)行整理,得到下列不完整的統(tǒng)計圖表.
請根據(jù)所給信息,解答以下問題:
表中___;____請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.20.(8分)如圖,△ABC內(nèi)接于⊙O,過點(diǎn)C作BC的垂線交⊙O于D,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當(dāng)AB=8,CE=2時,求⊙O直徑的長.21.(8分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?22.(10分)先化簡,再求值:,其中23.(12分)如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點(diǎn),且時,,指出點(diǎn)P、Q各位于哪個象限?并簡要說明理由.24.將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對稱軸.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【題目點(diǎn)撥】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.2、D【解題分析】
先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【題目詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【題目點(diǎn)撥】本題主要考查概率的求法,熟練掌握概率的求法是解題的關(guān)鍵.3、D【解題分析】
根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【題目詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.4、C【解題分析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.5、D【解題分析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點(diǎn)評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.6、B【解題分析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.7、B【解題分析】
先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【題目詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【題目點(diǎn)撥】本題主要考查算術(shù)平均數(shù)和方差,解題的關(guān)鍵是熟練掌握平均數(shù)和方差的定義.8、B【解題分析】解:當(dāng)點(diǎn)P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當(dāng)點(diǎn)P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當(dāng)點(diǎn)P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減??;當(dāng)點(diǎn)P在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當(dāng)點(diǎn)P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;故選B.9、C【解題分析】
設(shè)的兩根為x1,x2,由二次函數(shù)的圖象可知,;設(shè)方程的兩根為m,n,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【題目詳解】解:設(shè)的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設(shè)方程的兩根為m,n,則.故選C.【題目點(diǎn)撥】本題考查的是拋物線與x軸的交點(diǎn),熟知拋物線與x軸的交點(diǎn)與一元二次方程根的關(guān)系是解答此題的關(guān)鍵.10、A【解題分析】【分析】先求出每一個不等式的解集,然后再根據(jù)不等式組無解得到有關(guān)m的不等式,就可以求出m的取值范圍了.【題目詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【題目點(diǎn)撥】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1.【解題分析】
設(shè)正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標(biāo),代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【題目詳解】設(shè)正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標(biāo)代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點(diǎn):二次函數(shù)綜合題.12、1.【解題分析】
由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【題目詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【題目點(diǎn)撥】此題考查了切線的性質(zhì),切線長定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.13、2【解題分析】設(shè)與墻平行的一邊長為xm,則另一面為,其面積=,∴最大面積為;即最大面積是2m1.故答案是2.【題目點(diǎn)撥】求二次函數(shù)的最大(?。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對值是較小的整數(shù)時,用配方法較好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比較簡單.14、50°【解題分析】
由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【題目詳解】解:,PB分別為的切線,
,,
又,
,
則.
故答案為:【題目點(diǎn)撥】此題考查了切線長定理,切線的性質(zhì),以及等腰三角形的性質(zhì),熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.15、(,)【解題分析】分析:連接OC,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,則有△AOE≌△OCF,進(jìn)而可得出AE=OF、OE=CF,根據(jù)角平分線的性質(zhì)可得出,設(shè)點(diǎn)A的坐標(biāo)為(a,)(a>0),由可求出a值,進(jìn)而得到點(diǎn)A的坐標(biāo).詳解:連接OC,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設(shè)點(diǎn)A的坐標(biāo)為(a,),∴,解得:a=或a=-(舍去),∴=,∴點(diǎn)A的坐標(biāo)為(,),故答案為:((,)).點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰直角三角形性質(zhì)的綜合運(yùn)用,構(gòu)造全等三角形,利用全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.16、2【解題分析】
設(shè)EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【題目詳解】設(shè)EF=x,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.三、解答題(共8題,共72分)17、證明見解析.【解題分析】
過點(diǎn)B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證.【題目詳解】證明:如圖,過點(diǎn)B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.18、(1)3;(2)【解題分析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數(shù)定義求出DE與BE之比,設(shè)出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長,根據(jù)tanB的值求出cosB的值,確定出BC的長,由BC﹣BD求出CD的長,利用銳角三角函數(shù)定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設(shè)DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點(diǎn)睛:本題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,勾股定理,等腰直角三角形的判定與性質(zhì),熟練掌握各自的性質(zhì)是解答本題的關(guān)鍵.19、(1)0.3,45;(2);(3)【解題分析】
(1)根據(jù)頻數(shù)的和為樣本容量,頻率的和為1,可直接求解;(2)根據(jù)頻率可得到百分比,乘以360°即可;(3)列出相應(yīng)的可能性表格,找到所發(fā)生的所有可能和符合條件的可能求概率即可.【題目詳解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列關(guān)系表格為:由表格可知,滿足題意的概率為:.考點(diǎn):1、頻數(shù)分布表,2、扇形統(tǒng)計圖,3、概率20、(1)見解析;(2)⊙O直徑的長是4.【解題分析】
(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結(jié)論;
(2)先判斷出AC⊥BD,進(jìn)而求出BC=AB=8,進(jìn)而判斷出△BDC∽△BED,求出BD,即可得出結(jié)論.【題目詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直徑,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切線;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直徑,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴=,∴BD2=BC?BE=8×10=80,∴BD=4.即⊙O直徑的長是4.【題目點(diǎn)撥】此題主要考查圓周角定理,垂徑定理,相似三角形的判定和性質(zhì),切線的判定和性質(zhì),第二問中求出BC=8是解本題的關(guān)鍵.21、1千米/時【解題分析】
設(shè)水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順?biāo)叫械木嚯x與逆水航
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地面輻射供暖系統(tǒng)地面磚面層施工技術(shù)探討
- 初一理化生神經(jīng)系統(tǒng)組成
- 語法練習(xí)和答案-定語從句練習(xí)
- 高中語文專題3文明的對話第12課傳統(tǒng)文化與文化傳統(tǒng)課件蘇教版必修
- 2024-2025學(xué)年八年級上學(xué)期英語期中復(fù)習(xí)之Unit1~unit4語法復(fù)習(xí)及練習(xí)(譯林版)
- 專業(yè)技術(shù)人員繼續(xù)教育答案職業(yè)生涯規(guī)劃與管理滿分
- 六年級心理健康教育教案參考修改版
- 匯率制與匯率政策
- Unit 5 A healthy lifestyle Reading2課時練(無答案)
- 部編版二上語文識字4田家四季歌圖文
- 2016新編過盈量與裝配力計算公式
- 《建筑施工高處作業(yè)安全技術(shù)規(guī)范》(-)-全文
- 妊娠患者非產(chǎn)科手術(shù)麻醉專家講座
- 家具制造業(yè)生產(chǎn)管理制度大全
- 金融科技創(chuàng)新對金融服務(wù)的影響研究
- 2023版思想道德與法治專題6 遵守道德規(guī)范 錘煉道德品格 第2講 吸收借鑒優(yōu)秀道德成果
- 子宮破裂的護(hù)理查房201711
- 水利水電工程施工技術(shù)-鋼筋工程
- 中醫(yī)內(nèi)科汗證
- 學(xué)校食堂食品安全風(fēng)險清單
- YY/T 0612-2022一次性使用人體動脈血樣采集器(動脈血?dú)忉?
評論
0/150
提交評論