版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市集美區(qū)杏東中學2024屆中考一模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式2.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.3.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.4.如圖已知⊙O的內接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°5.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度6.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為相反數(shù)的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C7.在平面直角坐標系中,函數(shù)的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限8.對于函數(shù)y=,下列說法正確的是()A.y是x的反比例函數(shù) B.它的圖象過原點C.它的圖象不經過第三象限 D.y隨x的增大而減小9.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)10.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是7二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AD、BE分別是BC、AC兩邊中線,則=_____.12.閱讀材料:設=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.13.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.14.在直徑為10m的圓柱形油槽內裝入一些油后,截面如圖所示如果油面寬AB=8m,那么油的最大深度是_________.15.如果兩個相似三角形的面積的比是4:9,那么它們對應的角平分線的比是_____.16.將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將△ABC向右滾動,則x的值等于_____,數(shù)字2012對應的點將與△ABC的頂點_____重合.17.分解因式:=____三、解答題(共7小題,滿分69分)18.(10分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.19.(5分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數(shù)關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.20.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.21.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.23.(12分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.24.(14分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
利用事件的分類、普查和抽樣調查的特點、概率的意義以及方差的性質即可作出判斷.【題目詳解】解:A、擲一枚均勻的骰子,骰子停止轉動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【題目點撥】本題考查方差;全面調查與抽樣調查;隨機事件;概率的意義,掌握基本概念是解題關鍵.2、B【解題分析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結合無理數(shù)的定義進行判斷即可得答案.【題目詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【題目點撥】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關鍵.3、D【解題分析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據(jù)三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【題目詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【題目點撥】本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.4、B【解題分析】
如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【題目詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【題目點撥】本題考查圓周角定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5、A【解題分析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據(jù)平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.6、C【解題分析】
根據(jù)相反數(shù)的定義進行解答即可.【題目詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點,可確定點A和點D表示互為相反數(shù)的點.故答案為C.【題目點撥】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關鍵.7、A【解題分析】【分析】一次函數(shù)y=kx+b的圖象經過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【題目詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【題目點撥】一次函數(shù)y=kx+b的圖象經過第幾象限,取決于x的系數(shù)和常數(shù)項.8、C【解題分析】
直接利用反比例函數(shù)的性質結合圖象分布得出答案.【題目詳解】對于函數(shù)y=,y是x2的反比例函數(shù),故選項A錯誤;它的圖象不經過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【題目點撥】此題主要考查了反比例函數(shù)的性質,正確得出函數(shù)圖象分布是解題關鍵.9、A【解題分析】分析:根據(jù)B點的變化,確定平移的規(guī)律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應點A1的坐標為(4,4)、點C(﹣2,1)的對應點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關鍵是根據(jù)已知點的平移變化總結出平移的規(guī)律.10、C【解題分析】
根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【題目詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【題目點撥】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
利用三角形中位線的性質定理以及相似三角形的性質即可解決問題;【題目詳解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【題目點撥】考查相似三角形的判定和性質、三角形中位線定理等知識,解題的關鍵是熟練掌握三角形中位線定理.12、6【解題分析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.13、-23≤y≤2【解題分析】
先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【題目詳解】解:∵a=-1,
∴拋物線的開口向下,故有最大值,
∵對稱軸x=-3,
∴當x=-3時y最大為2,
當x=2時y最小為-23,
∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數(shù)的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.14、2m【解題分析】
本題是已知圓的直徑,弦長求油的最大深度其實就是弧AB的中點到弦AB的距離,可以轉化為求弦心距的問題,利用垂徑定理來解決.【題目詳解】解:過點O作OM⊥AB交AB與M,交弧AB于點E.連接OA.在Rt△OAM中:OA=5m,AM=12根據(jù)勾股定理可得OM=3m,則油的最大深度ME為5-3=2m.【題目點撥】圓中的有關半徑,弦長,弦心距之間的計算一般是通過垂徑定理轉化為解直角三角形的問題.15、2:1【解題分析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應的角平分線的比等于相似比,可知它們對應的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質,即相似三角形對應邊的比、對應高線的比、對應角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.16、﹣1C.【解題分析】∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數(shù)為x﹣1,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數(shù)字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數(shù)字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數(shù)與數(shù)軸,一元一次方程等知識,本題將數(shù)與式的考查有機地融入“圖形與幾何”中,滲透“數(shù)形結合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.17、x(y+2)(y-2)【解題分析】
原式提取x,再利用平方差公式分解即可.【題目詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【題目點撥】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)+【解題分析】
(1)利用題中的邊的關系可求出△OAC是正三角形,然后利用角邊關系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質就可以得到AD.【題目詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【題目點撥】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質以及圓周角定理、等邊三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.19、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解題分析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.20、(1)見解析;(2)AC∥BD,理由見解析;(3)【解題分析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;
(3)首先利用相似三角形的性質表示出BD,PM的長,進而根據(jù)三角形的面積公式得到△PBD的面積.【題目詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【題目點撥】本題考查相似三角形的性質和判定,解題的關鍵是掌握相似三角形的性質和判定.21、;【解題分析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【題目詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【題目點撥】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)值.22、【解題分析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)信用貸款合同內容與貸后管理規(guī)范
- 2025年度彩鋼房智能控制系統(tǒng)集成合同
- 2025年度廣告宣傳品制作合同示范文本
- 2025年度國際健康產業(yè)投資合作合同
- 2025年專利獨家特許使用合同樣本(三篇)
- 2025年度教育機器人銷售及服務合同
- 2025年度高層住宅建筑安全質量承包合同
- 2025年度數(shù)字廣告平臺合作合同-@-1
- 2025年度新能源汽車充電設施租賃服務合同
- 2025年度小型挖掘機二手交易及翻新服務合同
- 《聚焦客戶創(chuàng)造價值》課件
- 公安校園安全工作培訓課件
- PTW-UNIDOS-E-放射劑量儀中文說明書
- 保險學(第五版)課件全套 魏華林 第0-18章 緒論、風險與保險- 保險市場監(jiān)管、附章:社會保險
- 許小年:淺析日本失去的30年-兼評“資產負債表衰退”
- 典范英語2b課文電子書
- 17~18世紀意大利歌劇探析
- β內酰胺類抗生素與合理用藥
- 何以中國:公元前2000年的中原圖景
- 第一章:公共政策理論模型
- GB/T 4513.7-2017不定形耐火材料第7部分:預制件的測定
評論
0/150
提交評論