福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省泉州市惠安縣2024屆中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合2.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.3.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當(dāng)∠2=38°時,∠1=()A.52° B.38° C.42° D.60°4.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結(jié)論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④5.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.6.在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是()A.平均數(shù)為160 B.中位數(shù)為158 C.眾數(shù)為158 D.方差為20.37.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.129.若關(guān)于的方程的兩根互為倒數(shù),則的值為()A. B.1 C.-1 D.010.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同。現(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.關(guān)于x的方程kx2﹣(2k+1)x+k+2=0有實數(shù)根,則k的取值范圍是_____.12.因式分解:________.13.如圖,ABCD是菱形,AC是對角線,點E是AB的中點,過點E作對角線AC的垂線,垂足是點M,交AD邊于點F,連結(jié)DM.若∠BAD=120°,AE=2,則DM=__.14.化簡:_____________.15.如圖,正比例函數(shù)y=kx與反比例函數(shù)y=的圖象有一個交點A(2,m),AB⊥x軸于點B,平移直線y=kx使其經(jīng)過點B,得到直線l,則直線l對應(yīng)的函數(shù)表達式是_________.16.=_____.17.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時,求證:BE=BN.19.(5分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當(dāng)點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標(biāo)出此時點P的位置.20.(8分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.21.(10分)我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點稱為斜坐標(biāo)系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應(yīng)的數(shù)分別叫做P點的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(x,y)稱為點P的斜坐標(biāo),記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.①點A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A,B,C.②設(shè)點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關(guān)系為.③設(shè)點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關(guān)系為.(2)若ω=120°,O為坐標(biāo)原點.①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標(biāo).②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個點到y(tǒng)軸的距離為1,則圓M的半徑r的取值范圍是.22.(10分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?3.(12分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.求證:(1)AE=BF;(2)AE⊥BF.24.(14分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.2、D【解題分析】根據(jù)鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.3、A【解題分析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質(zhì).4、B【解題分析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關(guān)系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【題目點撥】本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),解直角三角形,解題的關(guān)鍵是掌握它們的性質(zhì)進行解題.5、B【解題分析】

A.括號前是負號去括號都變號;B負次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【題目詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【題目點撥】本題考查去括號法則的應(yīng)用,分式的性質(zhì),二次根式的算法,熟記知識點是解題的關(guān)鍵.6、D【解題分析】解:A.平均數(shù)為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數(shù)為158,故中位數(shù)為158,正確,故本選項不符合題意;C.?dāng)?shù)據(jù)158出現(xiàn)了2次,次數(shù)最多,故眾數(shù)為158,正確,故本選項不符合題意;D.這組數(shù)據(jù)的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數(shù)、平均數(shù)、中位數(shù)及方差,解題的關(guān)鍵是掌握它們的定義,難度不大.7、D【解題分析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【題目點撥】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).8、B【解題分析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.9、C【解題分析】

根據(jù)已知和根與系數(shù)的關(guān)系得出k2=1,求出k的值,再根據(jù)原方程有兩個實數(shù)根,即可求出符合題意的k的值.【題目詳解】解:設(shè)、是的兩根,由題意得:,由根與系數(shù)的關(guān)系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數(shù)根,則,當(dāng)k=1時,,∴k=1不合題意,故舍去,當(dāng)k=?1時,,符合題意,∴k=?1,故答案為:?1.【題目點撥】本題考查的是一元二次方程根與系數(shù)的關(guān)系及相反數(shù)的定義,熟知根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.10、A【解題分析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、k≤.【解題分析】

分k=1及k≠1兩種情況考慮:當(dāng)k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【題目詳解】當(dāng)k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當(dāng)k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【題目點撥】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關(guān)鍵.12、a(a+1)(a-1)【解題分析】

先提公因式,再利用公式法進行因式分解即可.【題目詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)【題目點撥】本題考查了因式分解,先提公因式再利用平方差公式是解題的關(guān)鍵.13、.【解題分析】

作輔助線,構(gòu)建直角△DMN,先根據(jù)菱形的性質(zhì)得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計算DM的長.【題目詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【題目點撥】本題主要考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理及直角三角形30度角的性質(zhì),熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.14、【解題分析】

根據(jù)分式的運算法則即可求解.【題目詳解】原式=.故答案為:.【題目點撥】此題主要考查分式的運算,解題的關(guān)鍵是熟知分式的運算法則.15、y=x-3【解題分析】【分析】由已知先求出點A、點B的坐標(biāo),繼而求出y=kx的解析式,再根據(jù)直線y=kx平移后經(jīng)過點B,可設(shè)平移后的解析式為y=kx+b,將B點坐標(biāo)代入求解即可得.【題目詳解】當(dāng)x=2時,y==3,∴A(2,3),B(2,0),∵y=kx過點A(2,3),∴3=2k,∴k=,∴y=x,∵直線y=x平移后經(jīng)過點B,∴設(shè)平移后的解析式為y=x+b,則有0=3+b,解得:b=-3,∴平移后的解析式為:y=x-3,故答案為:y=x-3.【題目點撥】本題考查了一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,涉及到待定系數(shù)法,一次函數(shù)圖象的平移等,求出k的值是解題的關(guān)鍵.16、1【解題分析】分析:第一項根據(jù)非零數(shù)的零次冪等于1計算,第二項根據(jù)算術(shù)平方根的意義化簡,第三項根據(jù)負整數(shù)指數(shù)冪等于這個數(shù)的正整數(shù)指數(shù)冪的倒數(shù)計算.詳解:原式=1+2﹣2=1.故答案為:1.點睛:本題考查了實數(shù)的運算,熟練掌握零指數(shù)冪、算術(shù)平方根的意義,負整數(shù)指數(shù)冪的運算法則是解答本題的關(guān)鍵.17、【解題分析】

連接,根據(jù)勾股定理知,可得當(dāng)時,即線段最短,然后由勾股定理即可求得答案.【題目詳解】連接.∵是的切線,∴;∴,∴當(dāng)時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【題目點撥】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析.【解題分析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結(jié)合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結(jié)合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質(zhì)及矩形性質(zhì)的題目,熟練掌握相關(guān)圖形的性質(zhì)和判定是順利解題的關(guān)鍵.19、(1)詳見解析;(2).【解題分析】

(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,F(xiàn)F+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數(shù)求解.【題目詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【題目點撥】本題考查了菱形的判定與性質(zhì)以及圖形的對稱,根據(jù)菱形的對稱性,理解PF+PM的最小值就是EM的長是關(guān)鍵.20、證明見解析.【解題分析】

不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【題目詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【題目點撥】本題重點考查了圓周角定理、直徑所對的圓周角為直角及相似三角形判定等知識的綜合運用.21、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解題分析】

(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時,⊙M的半徑即可解決問題.【題目詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x軸,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等邊三角形,∴MN=,當(dāng)FN=1時,MF=﹣1,當(dāng)EN=1時,ME=+1,觀察圖象可知當(dāng)⊙M的半徑r的取值范圍為﹣1<r<+1.故答案為:﹣1<r<+1.【題目點撥】本題考查圓綜合題、平行線分線段成比例定理、等邊三角形的判定和性質(zhì)、平面直角坐標(biāo)系等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,屬于中考壓軸題.22、(1)證明見解析;(2)50°.【解題分析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論