版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江金華市第五中學2024屆中考三模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直2.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°3.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處4.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1255.關(guān)于x的一元二次方程x2+3x+m=0有兩個不相等的實數(shù)根,則A.m≤94B.m<946.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.7.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.28.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個9.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.1010.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小二、填空題(共7小題,每小題3分,滿分21分)11.2017年5月5日我國自主研發(fā)的大型飛機C919成功首飛,如圖給出了一種機翼的示意圖,用含有m、n的式子表示AB的長為______.12.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.13.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.14.科學家發(fā)現(xiàn),距離地球2540000光年之遙的仙女星系正在向銀河系靠近.其中2540000用科學記數(shù)法表示為_____.15.如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.16.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.17.如圖,在△ABC中,AD、BE分別是BC、AC兩邊中線,則=_____.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(x﹣2﹣)÷,其中x=.19.(5分)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.(1)求y與x的函數(shù)關(guān)系式;(2)直接寫出自變量x的取值范圍.20.(8分)黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?21.(10分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.22.(10分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結(jié).(1)求證:四邊形為菱形;(2)連結(jié),若平分,,求的長.23.(12分)為了提高中學生身體素質(zhì),學校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學生;請補全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.24.(14分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
本題要根據(jù)過平面上的兩點有且只有一條直線的性質(zhì)解答.【題目詳解】根據(jù)兩點確定一條直線.故選:B.【題目點撥】本題考查了“兩點確定一條直線”的公理,難度適中.2、A【解題分析】
根據(jù)對頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【題目詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【題目點撥】本題考查了平行線的性質(zhì),知道“兩直線平行,同旁內(nèi)角互補”是解題的關(guān)鍵.3、D【解題分析】
到三條相互交叉的公路距離相等的地點應(yīng)是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【題目詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【題目點撥】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.4、B【解題分析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【題目詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【題目點撥】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.5、B【解題分析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.6、B【解題分析】從幾何體的正面看可得下圖,故選B.7、B【解題分析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.8、D【解題分析】
根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【題目詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.9、A【解題分析】解:設(shè)矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.10、C【解題分析】
由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【題目點撥】本題屬于對反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個象限單調(diào)性的變化二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
過點C作CE⊥CF延長BA交CE于點E,先求得DF的長,可得到AE的長,最后可求得AB的長.【題目詳解】解:延長BA交CE于點E,設(shè)CF⊥BF于點F,如圖所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案為:.【題目點撥】此題考查解直角三角形的應(yīng)用,解題的關(guān)鍵在于做輔助線.12、10%【解題分析】
設(shè)平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【題目詳解】設(shè)平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【題目點撥】此題考查了一元二次方程的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.13、a<﹣1【解題分析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關(guān)鍵是掌握不等式的性質(zhì),再不等式兩邊同加或同減一個數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數(shù)或式子,不等號的方向改變.14、2.54×1【解題分析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】2540000的小數(shù)點向左移動6位得到2.54,所以,2540000用科學記數(shù)法可表示為:2.54×1,故答案為2.54×1.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.15、1【解題分析】作DH⊥x軸于H,如圖,
當y=0時,-3x+3=0,解得x=1,則A(1,0),
當x=0時,y=-3x+3=3,則B(0,3),
∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D點坐標為(1,1),
∵頂點D恰好落在雙曲線y=上,
∴a=1×1=1.故答案是:1.16、【解題分析】
解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【題目點撥】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.17、【解題分析】
利用三角形中位線的性質(zhì)定理以及相似三角形的性質(zhì)即可解決問題;【題目詳解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【題目點撥】考查相似三角形的判定和性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形中位線定理.三、解答題(共7小題,滿分69分)18、【解題分析】
根據(jù)分式的運算法則即可求出答案.【題目詳解】原式,,.當時,原式【題目點撥】本題考查的知識點是分式的化簡求值,解題關(guān)鍵是化簡成最簡再代入計算.19、(1)y=-2x+31,(2)20≤x≤1【解題分析】試題分析:(1)根據(jù)函數(shù)圖象經(jīng)過點(20,300)和點(30,280),利用待定系數(shù)法即可求出y與x的函數(shù)關(guān)系式;
(2)根據(jù)試銷期間銷售單價不低于成本單價,也不高于每千克1元,結(jié)合草莓的成本價即可得出x的取值范圍.試題解析:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意,得:解得:∴y與x的函數(shù)解析式為y=-2x+31,(2)∵試銷期間銷售單價不低于成本單價,也不高于每千克1元,且草莓的成本為每千克20元,
∴自變量x的取值范圍是20≤x≤1.20、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解題分析】
(1)設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設(shè)雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=寢室數(shù)×每間寢室可住人數(shù),可找出w關(guān)于y的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【題目詳解】(1)解:設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數(shù)量的年平均增長率為37.5%.(2)解:設(shè)雙人間有y間,可容納人數(shù)為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數(shù)量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據(jù)題意得:w=2y+20y+121﹣6y=16y+121,∴當y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【題目點撥】本題考查了一元二次方程的應(yīng)用、一元一次不等式組的應(yīng)用以及一次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量之間的關(guān)系,找出w關(guān)于y的函數(shù)關(guān)系式.21、(1),(2)【解題分析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:∵總共有9種等可能情況,當出現(xiàn)(勝,勝)或(負,負)這兩種情形時,贏家產(chǎn)生,∴兩局游戲能確定贏家的概率為:.(1)根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結(jié)果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案.(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結(jié)果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.22、(1)證明見解析;(2)AC=;【解題分析】
(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;
(2)只要證明△ACD是直角三角形,∠ADC=60°,AD=2即可解決問題;【題目詳解】(1)證明:∵AD=2BC,E為AD的中點,∴DE=BC,∵AD∥BC,∴四邊形BCDE是平行四邊形,∵∠ABD=90°,AE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省三明市大田縣2022-2023學年八年級下學期期中考試物理試題【含答案、解析】
- 2025年度門窗安裝與綠色建筑認證服務(wù)合同7篇
- 二零二五年度農(nóng)家樂旅游咨詢服務(wù)與導游服務(wù)合同4篇
- 二零二五年度文化旅游節(jié)慶活動策劃合同:文化旅游活動整體運營管理協(xié)議3篇
- 2025年度個人藝術(shù)品收藏與交易合同范本10篇
- 2025年地表水資源勘察合同
- 2025年貴州嘉城建設(shè)投資有限公司招聘筆試參考題庫含答案解析
- 2025年青海省青海湖旅游集團公司招聘筆試參考題庫含答案解析
- 2025年江蘇射陽天工商貿(mào)有限公司招聘筆試參考題庫含答案解析
- 2025年貴州雍泰土地開發(fā)有限公司招聘筆試參考題庫含答案解析
- 湖北省十堰市城區(qū)2024-2025學年九年級上學期期末質(zhì)量檢測綜合物理試題(含答案)
- 2024企業(yè)答謝晚宴會務(wù)合同3篇
- 高中生物選擇性必修1試題
- 電氣工程及其自動化專業(yè)《畢業(yè)設(shè)計(論文)及答辯》教學大綱
- 《客艙安全管理與應(yīng)急處置》課件-第14講 應(yīng)急撤離
- 中華人民共和國文物保護法
- 2025屆高考作文押題預測5篇
- 節(jié)前物業(yè)安全培訓
- 阿里巴巴國際站:2024年珠寶眼鏡手表及配飾行業(yè)報告
- 高甘油三酯血癥相關(guān)的器官損傷
- 手術(shù)室護士考試題及答案
評論
0/150
提交評論