![江蘇省南京市六校2024屆中考二模數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/35/07/wKhkGWVzcKCAI_3GAAIzqzt_pQY798.jpg)
![江蘇省南京市六校2024屆中考二模數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/35/07/wKhkGWVzcKCAI_3GAAIzqzt_pQY7982.jpg)
![江蘇省南京市六校2024屆中考二模數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/35/07/wKhkGWVzcKCAI_3GAAIzqzt_pQY7983.jpg)
![江蘇省南京市六校2024屆中考二模數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/35/07/wKhkGWVzcKCAI_3GAAIzqzt_pQY7984.jpg)
![江蘇省南京市六校2024屆中考二模數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/35/07/wKhkGWVzcKCAI_3GAAIzqzt_pQY7985.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市六校2024屆中考二模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)2.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)3.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x14.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1005.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或146.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.7.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°8.下列各數(shù)中是無理數(shù)的是()A.cos60° B. C.半徑為1cm的圓周長 D.9.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.10.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知直線與拋物線交于A,B兩點,則_______.12.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.13.已知關于x的一元二次方程(k﹣5)x2﹣2x+2=0有實根,則k的取值范圍為_____.14.直線y=2x+1經(jīng)過點(0,a),則a=________.15.如圖,在平行四邊形中,點在邊上,將沿折疊得到,點落在對角線上.若,,,則的周長為________.16.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.三、解答題(共8題,共72分)17.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.18.(8分)已知關于x的一元二次方程kx2﹣6x+1=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍;(2)寫出滿足條件的k的最大整數(shù)值,并求此時方程的根.19.(8分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.20.(8分)為有效治理污染,改善生態(tài)環(huán)境,山西太原成為國內(nèi)首個實現(xiàn)純電動出租車的城市,綠色環(huán)保的電動出租車受到市民的廣泛歡迎,給市民的生活帶來了很大的方便,下表是行駛路程在15公里以內(nèi)時普通燃油出租車和純電動出租車的運營價格:車型起步公里數(shù)起步價格超出起步公里數(shù)后的單價普通燃油型313元2.3元/公里純電動型38元2元/公里張先生每天從家打出租車去單位上班(路程在15公里以內(nèi)),結(jié)果發(fā)現(xiàn),正常情況下乘坐純電動出租車比乘坐燃油出租車平均每公里節(jié)省0.8元,求張先生家到單位的路程.21.(8分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.22.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據(jù)以上方程與函數(shù)的關系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數(shù)圖象;(2)根據(jù)表格和圖象可知,方程的解有個,分別為;(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.23.(12分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.24.如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點坐標及D點的坐標;二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最?。咳鬋點存在,求出C點的坐標;若C點不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
根據(jù)絕對值的性質(zhì)進行求解即可得.【題目詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【題目點撥】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.2、A【解題分析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關系,再利用勾股定理得出答案.【題目詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【題目點撥】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.3、D【解題分析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關鍵.4、A【解題分析】
利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【題目詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【題目點撥】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.5、D【解題分析】
根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【題目詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【題目點撥】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉(zhuǎn)換,關于x軸對稱的點和拋物線的關系.6、D【解題分析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.7、B【解題分析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質(zhì).8、C【解題分析】分析:根據(jù)“無理數(shù)”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數(shù)是有理數(shù),不能選A;B選項中,因為是無限循環(huán)小數(shù),屬于有理數(shù),所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數(shù),所以可以選C;D選項中,因為,2是有理數(shù),所以不能選D.故選.C.點睛:正確理解無理數(shù)的定義:“無限不循環(huán)小數(shù)叫做無理數(shù)”是解答本題的關鍵.9、A【解題分析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【題目詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.【題目點撥】本題考查的是解一元一次不等式組.熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.10、C【解題分析】
作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】
將一次函數(shù)解析式代入二次函數(shù)解析式中,得出關于x的一元二次方程,根據(jù)根與系數(shù)的關系得出“x+x=-=,xx==-1”,將原代數(shù)式通分變形后代入數(shù)據(jù)即可得出結(jié)論.【題目詳解】將代入到中得,,整理得,,∴,,∴.【題目點撥】此題考查了二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì),解題關鍵在于將一次函數(shù)解析式代入二次函數(shù)解析式12、1【解題分析】
根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【題目詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【題目點撥】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關鍵.13、【解題分析】
若一元二次方程有實根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關于k的不等式組,求出k的取值范圍.【題目詳解】解:∵方程有兩個實數(shù)根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【題目點撥】此題考查根的判別式問題,總結(jié):一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.14、1【解題分析】
根據(jù)一次函數(shù)圖象上的點的坐標特征,將點(0,a)代入直線方程,然后解關于a的方程即可.【題目詳解】∵直線y=2x+1經(jīng)過點(0,a),∴a=2×0+1,∴a=1.故答案為1.15、6.【解題分析】
先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長.【題目詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【題目點撥】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長計算方法,運用轉(zhuǎn)化思想是解題的關鍵.16、1.【解題分析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質(zhì);等腰三角形的性質(zhì);勾股定理;分類討論.三、解答題(共8題,共72分)17、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解題分析】
(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【題目詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【題目點撥】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關鍵在于作輔助線18、(1)(2),【解題分析】【分析】(1)根據(jù)一元二次方程的定義可知k≠0,再根據(jù)方程有兩個不相等的實數(shù)根,可知△>0,從而可得關于k的不等式組,解不等式組即可得;(2)由(1)可寫出滿足條件的k的最大整數(shù)值,代入方程后求解即可得.【題目詳解】(1)依題意,得,解得且;(2)∵是小于9的最大整數(shù),∴此時的方程為,解得,.【題目點撥】本題考查了一元二次方程根的判別式、一元二次方程的定義、解一元二次方程等,熟練一元二次方程根的判別式與一元二次方程的根的情況是解題的關鍵.19、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解題分析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【題目詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【題目點撥】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.20、8.2km【解題分析】
首先設小明家到單位的路程是x千米,根據(jù)題意列出方程進行求解.【題目詳解】解:設小明家到單位的路程是x千米.依題意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到單位的路程是8.2千米.【題目點撥】本題考查一元一次方程的應用,找準等量關系是解題關鍵.21、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解題分析】
(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【題目詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關鍵.在(2)中證得△ABN≌△HFE是解題的關鍵.22、(1)2;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育培訓合作委托居間合同
- 品牌營銷推廣策略指南
- 技術產(chǎn)品銷售合同
- 華為勞動合同管理制度
- 遺傳基因技術服務合同
- 外貿(mào)實務操作作業(yè)指導書
- 倉儲配送合同
- 智能工廠建設與運營作業(yè)指導書
- 2025年來賓貨運從業(yè)資格證模擬考試題庫
- 2025年陜西貨運從業(yè)資格考試模擬考試題庫及答案大全
- 《社區(qū)康復》課件-第七章 腦癱患兒的社區(qū)康復實踐
- 城鄉(xiāng)環(huán)衛(wèi)一體化內(nèi)部管理制度
- 廣匯煤炭清潔煉化有限責任公司1000萬噸年煤炭分級提質(zhì)綜合利用項目變更環(huán)境影響報告書
- 小學數(shù)學六年級解方程練習300題及答案
- 大數(shù)據(jù)在化工行業(yè)中的應用與創(chuàng)新
- 光伏十林業(yè)可行性報告
- 小學綜合實踐《我做環(huán)保宣傳員 保護環(huán)境人人有責》
- 鋼煤斗內(nèi)襯不銹鋼板施工工法
- 公路工程安全風險辨識與防控手冊
- 供應商評估報告范本
- 職業(yè)生涯規(guī)劃-自我認知-價值觀
評論
0/150
提交評論