湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷含解析_第1頁
湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷含解析_第2頁
湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷含解析_第3頁
湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷含解析_第4頁
湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市長鐵一中重點中學2024屆中考數(shù)學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°2.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.63.下列關于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=04.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.45.在直角坐標系中,設一質點M自P0(1,0)處向上運動一個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處……,如此繼續(xù)運動下去,設Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.20196.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.7.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.8.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解9.以下各圖中,能確定的是()A. B. C. D.10.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).12.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.13.若點(,1)與(﹣2,b)關于原點對稱,則=_______.14.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.15.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.16.一個不透明的口袋中有四個完全相同的小球,把它們分別標號為,隨機取出一個小球后不放回,再隨機取出一個小球,則兩次取出的小球標號的和等于4的概率是_____.三、解答題(共8題,共72分)17.(8分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|18.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x19.(8分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).20.(8分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.21.(8分)先化簡,再求值:﹣÷,其中a=1.22.(10分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.23.(12分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?24.某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關于x的函數(shù)關系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

根據(jù)平行線的性質,可得的度數(shù),再根據(jù)以及平行線的性質,即可得出的度數(shù).【題目詳解】∵,,∴,∵,∴,∵,∴,故選C.【題目點撥】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.2、B【解題分析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【題目詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【題目點撥】考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質求得xy的最大值.3、B【解題分析】

根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2進行分析即可.【題目詳解】A.未知數(shù)的最高次數(shù)不是2

,不是一元二次方程,故此選項錯誤;

B.

是一元二次方程,故此選項正確;

C.

未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項錯誤;

D.

a=0時,不是一元二次方程,故此選項錯誤;

故選B.【題目點撥】本題考查一元二次方程的定義,解題的關鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2.4、C【解題分析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎題型.解方程的一般方法的掌握是解題的關鍵.5、C【解題分析】

根據(jù)各點橫坐標數(shù)據(jù)得出規(guī)律,進而得出x+x+…+x;經過觀察分析可得每4個數(shù)的和為2,把2019個數(shù)分為505組,即可得到相應結果.【題目詳解】解:根據(jù)平面坐標系結合各點橫坐標得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【題目點撥】此題主要考查規(guī)律型:點的坐標,解題關鍵在于找到其規(guī)律6、A【解題分析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質;3.矩形的性質.7、C【解題分析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質求解.【題目詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【題目點撥】本題考查切線長定理,掌握切線長定理是解題的關鍵.8、A【解題分析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.9、C【解題分析】

逐一對選項進行分析即可得出答案.【題目詳解】A中,利用三角形外角的性質可知,故該選項錯誤;B中,不能確定的大小關系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【題目點撥】本題主要考查平行線的性質及圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.10、D【解題分析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【題目詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【題目點撥】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、174cm1.【解題分析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉化為數(shù)學問題求解是本題的解題關鍵.12、﹣24【解題分析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.13、.【解題分析】

∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關于原點對稱的點的坐標.14、【解題分析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.15、1【解題分析】

根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【題目詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【題目點撥】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結果不是有限個或結果個數(shù)很多,或各種可能結果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.16、【解題分析】試題解析:畫樹狀圖得:由樹狀圖可知:所有可能情況有12種,其中兩次摸出的小球標號的和等于4的占2種,所以其概率=,故答案為.三、解答題(共8題,共72分)17、-4【解題分析】分析:第一項根據(jù)乘方的意義計算,第二項非零數(shù)的零次冪等于1,第三項根據(jù)特殊角銳角三角函數(shù)值計算,第四項根據(jù)絕對值的意義化簡.詳解:原式=-4+1-2×+-1=-4點睛:本題考查了實數(shù)的運算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對值的意義是解答本題的關鍵.18、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解題分析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【題目詳解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【題目點撥】本題考查了解一元二次方程,熟練掌握因式分解法是解此題的關鍵.19、(1)見解析;(2)是7.3米【解題分析】

(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關于AD的方程,解方程求解.【題目詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【題目點撥】解此題關鍵是把實際問題轉化為數(shù)學問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.20、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解題分析】

(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【題目詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,代入點A,B的坐標得,解得,∴直線AB的表達式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設點P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點Q在AB上運動,過N′作直線RS∥y軸,交QR于點R,交NE的延長線于點S,設Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點Q在BC上運動,且Q在y軸左側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點Q在BC上運動,且點Q在y軸右側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點Q的坐標為(-,)或(-,2)或(,2).【題目點撥】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質、翻折變換的性質及勾股定理等知識點.21、-1【解題分析】

原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結果,把a的值代入計算即可求出值.【題目詳解】解:原式=﹣?2(a﹣3)=﹣==,當a=1時,原式==﹣1.【題目點撥】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.22、【思考】h1+h1=h;【探究】h1-h(huán)1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解題分析】

思考:根據(jù)等腰三角形的性質,把代數(shù)式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【題目詳解】思考即h1+h1=h.探究h1-h(huán)1=h.理由.連接,∵∴∴h1-h(huán)1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論