




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年吉林省白城市通榆一中高一上數(shù)學(xué)期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.已知函數(shù),若方程有三個不同的實數(shù)根,則實數(shù)的取值范圍是A. B.C. D.2.若函數(shù)y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個公共點,則實數(shù)t的所有取值之和為()A.2 B.C.1 D.3.要得到函數(shù)的圖象,只需的圖象A.向左平移個單位,再把各點的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變)B.向左平移個單位,再把各點的縱坐標(biāo)縮短到原來的倍(橫坐標(biāo)不變)C.向左平移個單位,再把各點的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變)D.向左平移個單位,再把各點的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變)4.在空間直角坐標(biāo)系中,點關(guān)于面對稱的點的坐標(biāo)是A. B.C. D.5.若“”是假命題,則實數(shù)m的最小值為()A.1 B.-C. D.6.已知,則的最小值是()A.5 B.6C.7 D.87.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C. D.8.點到直線的距離等于()A. B.C.2 D.9.已知角的終邊經(jīng)過點,則的值為()A.11 B.10C.12 D.1310.設(shè),則()A. B.C. D.11.函數(shù)的值域為()A. B.C. D.12.已知函數(shù)則其在區(qū)間上的大致圖象是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.冪函數(shù)的圖像過點,則___________.14.將函數(shù)的圖象先向右平移個單位長度,得到函數(shù)________________的圖象,再把圖象上各點橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)________________的圖象15.若直線:與直線:互相垂直,則實數(shù)的值為__________16.函數(shù)的反函數(shù)是___________.三、解答題(本大題共6小題,共70分)17.(1)設(shè),求與的夾角;(2)設(shè)且與的夾角為,求的值.18.在平面直角坐標(biāo)系中,已知直線.(1)若直線在軸上的截距為-2,求實數(shù)的值,并寫出直線的截距式方程;(2)若過點且平行于直線的直線的方程為:,求實數(shù)的值,并求出兩條平行直線之間的距離.19.如圖1,直角梯形ABCD中,,,.如圖2,將圖1中沿AC折起,使得點D在平面ABC上的正投影G在內(nèi)部.點E為AB的中點.連接DB,DE,三棱錐D-ABC的體積為.對于圖2的幾何體(1)求證:;20.為了在冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層、某棟房屋要建造能使用20年的隔熱層,每厘米厚的隔熱層的建造成本是6萬元,該棟房屋每年的能源消耗費用C(萬元)與隔熱層厚度x(厘米)滿足關(guān)系式:,若無隔熱層,則每年能源消耗費用為5萬元.設(shè)為隔熱層建造費用與使用20年的能源消耗費用之和.(1)求和的表達(dá)式;(2)當(dāng)隔熱層修建多少厘米厚時,總費用最小,并求出最小值.21.已知圓:關(guān)于直線:對稱的圖形為圓.(1)求圓的方程;(2)直線:,與圓交于,兩點,若(為坐標(biāo)原點)的面積為,求直線的方程.22.已知函數(shù),只能同時滿足下列三個條件中的兩個:①的解集為;②;③最小值為(1)請寫出這兩個條件的序號,求的解析式;(2)求關(guān)于的不等式的解集.
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】由得畫出函數(shù)的圖象如圖所示,且當(dāng)時,函數(shù)的圖象以為漸近線結(jié)合圖象可得當(dāng)?shù)膱D象與直線有三個不同的交點,故若方程有三個不同的實數(shù)根,實數(shù)的取值范圍是.選A點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決,如在本題中,方程根的個數(shù),即為直線與圖象的公共點的個數(shù);(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.2、C【解析】可直接根據(jù)題意轉(zhuǎn)化為方程有兩個根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個t的值【詳解】由題意得方程有兩個不等實根,當(dāng)方程有兩個非負(fù)根時,令時,則方程為,整理得,解得;當(dāng)時,,解得,故不滿足滿足題意;當(dāng)方程有一個正跟一個負(fù)根時,當(dāng)時,,,解得,當(dāng)時,方程為,,解得;當(dāng)方程有兩個負(fù)根時,令,則方程為,解得,當(dāng),,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【點睛】本題是在二次函數(shù)的基礎(chǔ)上加了絕對值,所以首先需解決絕對值,關(guān)于去絕對值直接用分類討論思想即可;關(guān)于二次函數(shù)根的分布需結(jié)合對稱軸,判別式,進(jìn)而判斷,必要時可結(jié)合進(jìn)行判斷3、D【解析】先將函數(shù)的解析式化為,再利用三角函數(shù)圖象的變換規(guī)律得出正確選項.【詳解】,因此,將函數(shù)的圖象向左平移個單位,再把各點的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變),可得到函數(shù)的圖象,故選D.【點睛】本題考查三角函數(shù)的圖象變換,處理這類問題的要注意以下兩個問題:(1)左右平移指的是在自變量上變化了多少;(2)變換時兩個函數(shù)的名稱要保持一致.4、C【解析】關(guān)于面對稱的點為5、C【解析】根據(jù)題意可得“”是真命題,故只要即可,求出的最大值,即可求出的范圍,從而可得出答案.【詳解】解:因為“”是假命題,所以其否定“”是真命題,故只要即可,因為的最大值為,所以,解得,所以實數(shù)m的最小值為.故選:C.6、C【解析】,根據(jù)結(jié)合基本不等式即可得出答案.【詳解】解:,因為,又,所以,則,當(dāng)且僅當(dāng),即時,取等號,即的最小值是7.故選:C7、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當(dāng)時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎(chǔ)題.8、C【解析】由點到直線的距離公式求解即可.【詳解】解:由點到直線的距離公式得,點到直線的距離等于.故選:C【點睛】本題考查了點到直線的距離公式,屬基礎(chǔ)題.9、B【解析】由角的終邊經(jīng)過點,根據(jù)三角函數(shù)定義,求出,帶入即可求解.【詳解】∵角的終邊經(jīng)過點,∴,∴.故選:B【點睛】利用定義法求三角函數(shù)值要注意:(1)三角函數(shù)值的大小與點P(x,y)在終邊上的位置無關(guān),嚴(yán)格代入定義式子就可以求出對應(yīng)三角函數(shù)值;(2)當(dāng)角的終邊在直線上時,或終邊上的點帶參數(shù)必要時,要對參數(shù)進(jìn)行討論10、D【解析】由,則,再由指數(shù)、對數(shù)函數(shù)的單調(diào)性得出大小,得出答案.【詳解】由,則,,所以故選:D11、D【解析】根據(jù)分段函數(shù)的解析式,結(jié)合基本初等函數(shù)的單調(diào),分別求得兩段上函數(shù)的值域,進(jìn)而求得函數(shù)的值域.【詳解】當(dāng)時,單調(diào)遞減,此時函數(shù)的值域為;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,此時函數(shù)的最大值為,最小值為,此時值域為,綜上可得,函數(shù)值域為.故選:D.12、D【解析】為奇函數(shù),去掉A,B;當(dāng)時,所以選D.點睛:(1)運用函數(shù)性質(zhì)研究函數(shù)圖像時,先要正確理解和把握函數(shù)相關(guān)性質(zhì)本身的含義及其應(yīng)用方向.(2)在運用函數(shù)性質(zhì)特別是奇偶性、周期、對稱性、單調(diào)性、最值、零點時,要注意用好其與條件的相互關(guān)系,結(jié)合特征進(jìn)行等價轉(zhuǎn)化研究.如奇偶性可實現(xiàn)自變量正負(fù)轉(zhuǎn)化,周期可實現(xiàn)自變量大小轉(zhuǎn)化,單調(diào)性可實現(xiàn)去,即將函數(shù)值的大小轉(zhuǎn)化自變量大小關(guān)系二、填空題(本大題共4小題,共20分)13、【解析】先設(shè),再由已知條件求出,即,然后求即可.【詳解】解:由為冪函數(shù),則可設(shè),又函數(shù)的圖像過點,則,則,即,則,故答案為:.【點睛】本題考查了冪函數(shù)的解析式的求法,重點考查了冪函數(shù)求值問題,屬基礎(chǔ)題.14、①.②.【解析】根據(jù)三角函數(shù)的圖象變換可得變換后函數(shù)的解析式.【詳解】由三角函數(shù)的圖象變換可知,函數(shù)的圖象先向右平移可得,再把圖象上各點橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)可得,故答案為:;15、-2【解析】由于兩條直線垂直,故.16、;【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)直接求解.【詳解】因為,所以,即的反函數(shù)為,故答案為:三、解答題(本大題共6小題,共70分)17、(1);(2)61.【解析】(1)由已知中12,9,,代入平面向量的夾角公式,即可求出θ的余弦值,結(jié)合0°≤θ≤180°,即可得到答案(2)利用數(shù)量積運算法則即可得出;【詳解】(1)∵12,9,,∴cosθ又∵0°≤θ≤180°則θ=135°(2)∵,,且與夾角為120°,∴6∴42﹣(﹣6)﹣3×32=61【點睛】本題考查了向量的數(shù)量積運算法則及其性質(zhì)、夾角公式,屬于基礎(chǔ)題18、(1)直線的截距式方程為:;(2).【解析】(1)直線在軸上的截距為,等價于直線經(jīng)過點,代入直線方程得,所以,從而可得直線的一般式方程,再化為截距式即可;(2)把點代入直線的方程為可求得,由兩直線平行得:,所以,因為兩條平行直線之間的距離就是點到直線的距離,所以由點到直線距離公式可得結(jié)果.試題解析:(1)因為直線在軸上的截距為-2,所以直線經(jīng)過點,代入直線方程得,所以.所以直線的方程為,當(dāng)時,,所以直線的截距式方程為:.(2)把點代入直線的方程為:,求得由兩直線平行得:,所以因為兩條平行直線之間的距離就是點到直線的距離,所以.19、(1)證明見解析;(2).【解析】(1)取AC的中點F,連接DF,CE,EF,證明AC⊥平面DEF即可.(2)以G為坐標(biāo)原點,建立空間直角坐標(biāo)系,利用向量的方法求解線面角.【小問1詳解】取AC的中點F,連接DF,CE,EF,則△DAC,△EAC均為等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE?平面DEF,∴DE⊥AC【小問2詳解】連接GA,GC,∵DG⊥平面ABC,而GA?平面ABC,GC?平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分線上,又EA=EC,∴E在AC的垂直平分線上,∴EG垂直平分AC,又F為AC的中點,∴E,F(xiàn),G共線∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G為坐標(biāo)原點,GM為x軸,GE為y軸,GD為z軸,建立如圖所示的空間直角坐標(biāo)系,則A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),設(shè)平面DAC的法向量為=(x,y,z),則,得,令z=1,得:,于是,.20、(1),(2)隔熱層修建4厘米厚時,總費用達(dá)到最小值,最小值為64萬元【解析】(1)由已知,又不建隔熱層,每年能源消耗費用為5萬元.所以可得C(0)=5,由此可求,進(jìn)而得到.由已知建造費用為6x,根據(jù)隔熱層建造費用與20年的能源消耗費用之和為f(x),可得f(x)的表達(dá)式(2)由(1)中所求的f(x)的表達(dá)式,利用基本不等式求出總費用f(x)的最小值【小問1詳解】因為,若無隔熱層,則每年能源消耗費用為5萬元,所以,故,因為為隔熱層建造費用與使用20年的能源消耗費用之和,所以.【小問2詳解】,當(dāng)且僅當(dāng),即時,等號成立,即隔熱層修建4厘米厚時,總費用達(dá)到最小值,最小值為64萬元.21、(1),(2)【解析】(1)設(shè)圓圓心為,則由題意得,求出的值,從而可得所求圓的方程;(2)設(shè)圓心到直線:的距離為,原點到直線:的距離為,則有,,再由的面積為,列方程可求出的值,進(jìn)而可得直線方程【詳解】解:(1)設(shè)圓的圓心為,由題意可得,則的中點坐標(biāo)為,因為圓:關(guān)于直線:對稱的圖形為圓,所以,解得,因為圓和圓的半徑相同,即,所以圓的方程為,(2)設(shè)圓心到直線:的距離為,原點到直線:的距離為,則,,所以所以,解得,因為,所以,所以直線的方程為【點睛】關(guān)鍵點點睛:此題考查圓的方程的求法,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用點到直線的距離公式表示出圓心到直線的距離為,原點到直線的距離為,再表示出,從而由的面積為,得,進(jìn)而可求出的值,問題得到解決,考查計算能力,屬于中檔題22、(1)(2)答案見解析【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民辦幼兒園校醫(yī)駐點服務(wù)合同
- 海關(guān)監(jiān)管關(guān)務(wù)專員派遣合作協(xié)議
- 知識產(chǎn)權(quán)變更手續(xù)辦理及代理服務(wù)合同模板
- 商業(yè)二手房消防設(shè)施改造驗收及產(chǎn)權(quán)過戶合同
- 抖音火花社交數(shù)據(jù)接口接入與技術(shù)服務(wù)合同
- 網(wǎng)絡(luò)懸疑小說改編懸疑小說主題酒店授權(quán)合同
- 拼多多平臺店鋪流量運營與銷售增長服務(wù)合同
- 知識產(chǎn)權(quán)現(xiàn)狀告知與法律風(fēng)險評估合同
- 夫妻共同財產(chǎn)管理及分割協(xié)議
- 鹽酸特拉唑嗪對缺血再灌注損傷的治療作用及其機制探究
- 牛場安全培訓(xùn)
- 腦電圖及臨床應(yīng)用
- 2025年重慶中考語文a試題及答案2024
- 大學(xué)生的人際交往困境與突破
- 2024國家安全教育大學(xué)生讀本題庫
- 黃河文化(齊魯工業(yè)大學(xué))知到智慧樹章節(jié)測試課后答案2024年秋齊魯工業(yè)大學(xué)
- 變電站電網(wǎng)側(cè)儲能項目可行性研究報告
- 臨床診療指南-疼痛學(xué)分冊
- 舊房改造施工設(shè)計方案
- 2024年山東職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024認(rèn)定實際施工人法律風(fēng)險防范與合同完善服務(wù)合同3篇
評論
0/150
提交評論