




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題08函數(shù)與方程及常見的函數(shù)模型【考綱要求】1、結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點與方程根的聯(lián)系,判斷一元二次方程根的存在性與根的個數(shù).2、根據(jù)具體函數(shù)的圖象,能夠用二分法求相應(yīng)方程的近似解.3、了解指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征,指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義.4、了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會生活中普遍使用的函數(shù)模型)的應(yīng)用.【思維導(dǎo)圖】【考點總結(jié)】一、函數(shù)與方程1.函數(shù)的零點(1)函數(shù)零點的定義:對于函數(shù)y=f(x),把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.(2)三個等價關(guān)系:方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點.2.函數(shù)零點的判定如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是f(x)=0的根.我們把這一結(jié)論稱為函數(shù)零點存在性定理.3.二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關(guān)系Δ>0Δ=0Δ<0二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的交點(x1,0),(x2,0)(x1,0)無交點零點個數(shù)兩個一個零個【常用結(jié)論】有關(guān)函數(shù)零點的三個結(jié)論(1)若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個零點.(2)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號.(3)連續(xù)不斷的函數(shù)圖象通過零點時,函數(shù)值可能變號,也可能不變號.二、函數(shù)模型及其應(yīng)用1.幾種常見的函數(shù)模型函數(shù)模型函數(shù)解析式一次函數(shù)模型f(x)=ax+b(a,b為常數(shù),a≠0)二次函數(shù)模型f(x)=ax2+bx+c(a,b,c為常數(shù),a≠0)指數(shù)函數(shù)模型f(x)=bax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)對數(shù)函數(shù)模型f(x)=blogax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)冪函數(shù)模型f(x)=axn+b(a,b,n為常數(shù),a≠0,n≠0)2.三種函數(shù)模型性質(zhì)比較y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的單調(diào)性增函數(shù)增函數(shù)增函數(shù)增長速度越來越快越來越慢相對平穩(wěn)圖象的變化隨x值增大,圖象與y軸接近平行隨x值增大,圖象與x軸接近平行隨n值變化而不同【常用結(jié)論】1.“對勾”函數(shù)形如f(x)=x+eq\f(a,x)(a>0)的函數(shù)模型稱為“對勾”函數(shù)模型:(1)該函數(shù)在(-∞,-eq\r(a))和(eq\r(a),+∞)上單調(diào)遞增,在[-eq\r(a),0)和(0,eq\r(a)]上單調(diào)遞減.(2)當(dāng)x>0時,x=eq\r(a)時取最小值2eq\r(a),當(dāng)x<0時,x=-eq\r(a)時取最大值-2eq\r(a).2.解決函數(shù)應(yīng)用問題應(yīng)注意的3個易誤點(1)解應(yīng)用題的關(guān)鍵是審題,不僅要明白、理解問題講的是什么,還要特別注意一些關(guān)鍵的字眼(如“幾年后”與“第幾年”),學(xué)生常常由于讀題不謹(jǐn)慎而漏讀和錯讀,導(dǎo)致題目不會做或函數(shù)解析式寫錯.(2)解應(yīng)用題建模后一定要注意定義域.(3)解決完數(shù)學(xué)模型后,注意轉(zhuǎn)化為實際問題寫出總結(jié)答案.【題型匯編】題型一:函數(shù)與方程題型二:常見的函數(shù)模型:一次與二次型題型三:常見的函數(shù)模型:冪指對型題型四:常見的函數(shù)模型應(yīng)用實例【題型講解】題型一:函數(shù)與方程一、單選題1.(2022·北京市大興區(qū)興華中學(xué)三模)已知SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個不同的零點,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由SKIPIF1<0得出SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點,再由SKIPIF1<0有兩個不同的零點,得出a的取值范圍.【詳解】SKIPIF1<0,則SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點由SKIPIF1<0,解得SKIPIF1<0要使得SKIPIF1<0有兩個不同的零點,則SKIPIF1<0故選:A2.(2022·山東煙臺·三模)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有且僅有三個實數(shù)解,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】作出函數(shù)SKIPIF1<0的圖象,利用導(dǎo)數(shù)的幾何意義求出對應(yīng)的切線方程以及斜率,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】解:作出函數(shù)SKIPIF1<0的圖象如圖:依題意方程SKIPIF1<0有且僅有三個實數(shù)解,即SKIPIF1<0與SKIPIF1<0有且僅有三個交點,因為SKIPIF1<0必過SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0時,方程SKIPIF1<0不可能有三個實數(shù)解,則必有SKIPIF1<0,當(dāng)直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0時相切時,設(shè)切點坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則切線方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0切線方程為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有且僅有一個交點,要使方程SKIPIF1<0有且僅有三個的實數(shù)解,則當(dāng)SKIPIF1<0時SKIPIF1<0與SKIPIF1<0有兩個交點,設(shè)直線SKIPIF1<0與SKIPIF1<0切于點SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:B3.(2022·北京·首都師范大學(xué)附屬中學(xué)三模)已知函數(shù)SKIPIF1<0,給出下列四個結(jié)論:①若SKIPIF1<0,則SKIPIF1<0有一個零點;②若SKIPIF1<0,則SKIPIF1<0有三個零點;③SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上是增函數(shù);④SKIPIF1<0在SKIPIF1<0上是增函數(shù).其中所有正確結(jié)論的序號是(
)A.①②③ B.①③④ C.①②④ D.②③④【答案】C【解析】【分析】利用導(dǎo)數(shù)分段研究函數(shù)SKIPIF1<0的單調(diào)遞增,結(jié)合零點的存在性定理依次判斷命題即可.【詳解】因為函數(shù)SKIPIF1<0,所以函數(shù)SKIPIF1<0,對于①,當(dāng)SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0在R上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0有一個零點,故①正確;對于②,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有1個零點;當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,如圖,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有2個零點,綜上,當(dāng)SKIPIF1<0時函數(shù)SKIPIF1<0有3個零點,故②正確;對于③,當(dāng)SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,所以SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,所以SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以不存在SKIPIF1<0,使得SKIPIF1<0在R上是增函數(shù),故③錯誤;對于④,當(dāng)SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0在R上單調(diào)遞增,結(jié)合命題①的分析可知當(dāng)SKIPIF1<0時函數(shù)SKIPIF1<0在R上單調(diào)遞增,綜上,SKIPIF1<0,SKIPIF1<0在R上是增函數(shù),故④正確;故選:C.4.(2022·北京工業(yè)大學(xué)附屬中學(xué)三模)已知實數(shù)SKIPIF1<0是方程SKIPIF1<0的一個解,SKIPIF1<0是方程SKIPIF1<0的一個解,則SKIPIF1<0可以是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】依題意可得SKIPIF1<0、SKIPIF1<0,即可得到SKIPIF1<0,從而得解;【詳解】解:依題意SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0;故選:B5.(2022·天津市寶坻區(qū)第一中學(xué)二模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有m個零點,函數(shù)SKIPIF1<0有n個零點,且SKIPIF1<0,則非零實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】作出SKIPIF1<0的函數(shù)圖像,利用圖像列出關(guān)于SKIPIF1<0的不等式,解出SKIPIF1<0的范圍即可【詳解】SKIPIF1<0與SKIPIF1<0與SKIPIF1<0共交7個點SKIPIF1<0圖象如下:所以:(Ⅰ)SKIPIF1<0,解得SKIPIF1<0(Ⅱ)SKIPIF1<0,解得SKIPIF1<0綜上:SKIPIF1<0.故選:C6.(2022·天津市濱海新區(qū)塘沽第一中學(xué)三模)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個交點,則SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合正弦函數(shù)的單調(diào)性可得SKIPIF1<0,從而可求得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增這個條件SKIPIF1<0的范圍,再根據(jù)函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個交點,則在SKIPIF1<0上函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個交點,即方程SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,從而可得第二個條件下的SKIPIF1<0的范圍,取交集即可得出答案,注意說明SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個交點.【詳解】因為SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,若在SKIPIF1<0上函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個交點,即方程SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,即方程SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,結(jié)合圖象可得SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個交點,綜上所述,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個交點,滿足題意,故選:B.7.(2022·新疆克拉瑪依·三模(理))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的所有零點之和為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】把方程SKIPIF1<0變形,把零點個數(shù)轉(zhuǎn)化為正弦函數(shù)圖象與另一函數(shù)SKIPIF1<0圖象的交點個數(shù),根據(jù)函數(shù)的對稱性計算可得.【詳解】解:因為SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時顯然不成立,當(dāng)SKIPIF1<0時SKIPIF1<0,作出SKIPIF1<0和SKIPIF1<0的圖象,如圖,它們關(guān)于點SKIPIF1<0對稱,由圖象可知它們在SKIPIF1<0上有4個交點,且關(guān)于點SKIPIF1<0對稱,每對稱的兩個點的橫坐標(biāo)和為SKIPIF1<0,所以4個點的橫坐標(biāo)之和為SKIPIF1<0.故選:C.8.(2022·廣西·貴港市高級中學(xué)三模(理))已知SKIPIF1<0在SKIPIF1<0有且僅有6個實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先化簡SKIPIF1<0為SKIPIF1<0,再根據(jù)題意得出SKIPIF1<0,求解即可.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0有且僅有6個實數(shù)根,因為SKIPIF1<0,故只需SKIPIF1<0,解得SKIPIF1<0,故選:D.9.(2022·海南省直轄縣級單位·三模)設(shè)函數(shù)SKIPIF1<0定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0有(
)個零點A.4 B.5 C.6 D.7【答案】C【解析】【分析】根據(jù)題意可得SKIPIF1<0的對稱性,再畫出SKIPIF1<0的圖象,再數(shù)形結(jié)合判斷SKIPIF1<0的圖象交點個數(shù)即可【詳解】SKIPIF1<0的零點個數(shù)即SKIPIF1<0的圖象交點個數(shù).因為SKIPIF1<0為奇函數(shù),故SKIPIF1<0關(guān)于原點對稱,故SKIPIF1<0關(guān)于SKIPIF1<0對稱,又SKIPIF1<0為偶函數(shù),故SKIPIF1<0關(guān)于SKIPIF1<0對稱,又當(dāng)SKIPIF1<0時,SKIPIF1<0,畫出圖象,易得函數(shù)SKIPIF1<0的圖象有6個交點故選:C10.(2022·江西·二模(文))已知SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】設(shè)SKIPIF1<0,可知SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得出SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0在SKIPIF1<0上的值域,即為所求.【詳解】設(shè)SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖象可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象有三個交點,且SKIPIF1<0,由已知可得SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0減極小值增所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,因此,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【點睛】關(guān)鍵點點睛:解本題的關(guān)鍵在于通過設(shè)SKIPIF1<0,將SKIPIF1<0、SKIPIF1<0、SKIPIF1<0用含SKIPIF1<0的代數(shù)式加以表示,再將所求代數(shù)式的取值范圍轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)值域問題,結(jié)合導(dǎo)數(shù)法求解.二、多選題1.(2022·湖南師大附中三模)已知函數(shù)SKIPIF1<0對定義域內(nèi)任意x,都有SKIPIF1<0,若函數(shù)SKIPIF1<0在[0,+∞)上的零點從小到大恰好構(gòu)成一個等差數(shù)列,則k的可能取值為(
)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】結(jié)合SKIPIF1<0周期性和函數(shù)SKIPIF1<0在SKIPIF1<0的解析式畫出SKIPIF1<0的圖象,將SKIPIF1<0的零點轉(zhuǎn)化為函數(shù)圖象交點問題,分情況討論SKIPIF1<0的零點即可.【詳解】由已知,SKIPIF1<0,則SKIPIF1<0的周期為2.其大數(shù)圖象如圖所示,由圖可知,①當(dāng)SKIPIF1<0時,SKIPIF1<0零點為1、3、5、7、…,滿足題意;②當(dāng)SKIPIF1<0時,SKIPIF1<0零點為0、2、4、6、…,滿足題意;③當(dāng)SKIPIF1<0時,若零點從小到大構(gòu)成等差數(shù)列SKIPIF1<0,公差只能為1.由SKIPIF1<0,得SKIPIF1<0,此時SKIPIF1<0;④當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0無零點,不符合題意.故選:ABD.2.(2022·遼寧·撫順市第二中學(xué)三模)已知函數(shù)SKIPIF1<0,下列選項正確的是(
)A.點SKIPIF1<0是函數(shù)SKIPIF1<0的零點B.SKIPIF1<0,使SKIPIF1<0C.函數(shù)SKIPIF1<0的值域為SKIPIF1<0D.若關(guān)于x的方程SKIPIF1<0有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是SKIPIF1<0【答案】CD【解析】【分析】根據(jù)零點的定義即可判斷A;利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0的單調(diào)區(qū)間,從而可求得函數(shù)的值域,即可判斷C;根據(jù)函數(shù)的單調(diào)性分別求出函數(shù)在SKIPIF1<0和SKIPIF1<0的最值,即可判斷B;方程SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,結(jié)合C選項,方程SKIPIF1<0實數(shù)根的個數(shù),即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象交點的個數(shù),結(jié)合函數(shù)圖象即可求出SKIPIF1<0的范圍,即可判斷D.【詳解】解:對于A,因為SKIPIF1<0,所以SKIPIF1<0是函數(shù)SKIPIF1<0的零點,故A錯誤;對于C,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,綜上所述,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故C正確;對于B,由C可知,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞增,則SKIPIF1<0,所以不存在SKIPIF1<0,使SKIPIF1<0,故B錯誤;對于D,關(guān)于x的方程SKIPIF1<0有兩個不相等的實數(shù)根,即關(guān)于x的方程SKIPIF1<0有兩個不相等的實數(shù)根,所以SKIPIF1<0或SKIPIF1<0,由C知,方程SKIPIF1<0只有一個實數(shù)根,所以方程SKIPIF1<0也只有一個實數(shù)根,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象只有一個交點,如圖,畫出函數(shù)SKIPIF1<0的簡圖,則SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以實數(shù)a的取值范圍是SKIPIF1<0,故D正確.故選:CD.【點睛】本題考查了零點的定義,考查了利用到處求函數(shù)的單調(diào)區(qū)間及函數(shù)的值域,考查了利用導(dǎo)數(shù)解決方程實數(shù)根的個數(shù)的問題,考查了轉(zhuǎn)化思想及數(shù)形結(jié)合思想.題型二:常見的函數(shù)模型:一次與二次型一、單選題1.(2022·甘肅酒泉·模擬預(yù)測(文))如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點,點SKIPIF1<0沿著邊SKIPIF1<0、SKIPIF1<0與SKIPIF1<0運動,記SKIPIF1<0,將SKIPIF1<0的面積表示為關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.當(dāng)SKIPIF1<0時,SKIPIF1<0B.當(dāng)SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0D.當(dāng)SKIPIF1<0時,SKIPIF1<0【答案】C【解析】【分析】分SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三種情況討論,求出SKIPIF1<0的邊SKIPIF1<0上的高,結(jié)合三角形的面積公式可得出SKIPIF1<0的表達(dá)式.【詳解】SKIPIF1<0,則SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,點SKIPIF1<0在線段SKIPIF1<0上(不包括點SKIPIF1<0),則SKIPIF1<0,此時,SKIPIF1<0;當(dāng)SKIPIF1<0時,點SKIPIF1<0在線段SKIPIF1<0上(不包括點SKIPIF1<0),此時SKIPIF1<0;當(dāng)SKIPIF1<0時,點SKIPIF1<0在線段SKIPIF1<0上(不包括點SKIPIF1<0),此時SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選:C.2.(2022·黑龍江·哈爾濱三中三模(理))如圖為某小區(qū)七人足球場的平面示意圖,SKIPIF1<0為球門,在某次小區(qū)居民友誼比賽中,隊員甲在中線上距離邊線SKIPIF1<0米的SKIPIF1<0點處接球,此時SKIPIF1<0,假設(shè)甲沿著平行邊線的方向向前帶球,并準(zhǔn)備在點SKIPIF1<0處射門,為獲得最佳的射門角度(即SKIPIF1<0最大),則射門時甲離上方端線的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】先根據(jù)題意解出SKIPIF1<0長度,設(shè)SKIPIF1<0,得到SKIPIF1<0,再分析求值域,判斷取等條件即可求解.【詳解】設(shè)SKIPIF1<0,并根據(jù)題意作如下示意圖,由圖和題意得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0中,有SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則要使SKIPIF1<0最大,即SKIPIF1<0要取得最小值,即SKIPIF1<0取得最大值,即SKIPIF1<0在SKIPIF1<0取得最大值,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的對稱軸為:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,即SKIPIF1<0最大,此時SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即為獲得最佳的射門角度(即SKIPIF1<0最大),則射門時甲離上方端線的距離為:SKIPIF1<0.故選:B.3.(2022·云南曲靖·二模(文))我國在2020年9月22日在聯(lián)合國大會提出,二氧化碳排放力爭于2030年前實現(xiàn)碳達(dá)峰,爭取在2060年前實現(xiàn)碳中和.為了響應(yīng)黨和國家的號召,某企業(yè)在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān):把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,經(jīng)測算,該技術(shù)處理總成本y(單位:萬元)與處理量x(單位:噸)SKIPIF1<0之間的函數(shù)關(guān)系可近似表示為SKIPIF1<0,當(dāng)處理量x等于多少噸時,每噸的平均處理成本最少(
)A.120 B.200 C.240 D.400【答案】D【解析】【分析】先根據(jù)題意求出每噸的平均處理成本與處理量之間的函數(shù)關(guān)系,然后分SKIPIF1<0和SKIPIF1<0分析討論求出其最小值即可【詳解】由題意得二氧化碳每噸的平均處理成本為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值240,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,此時SKIPIF1<0取得最小值200,綜上,當(dāng)每月得理量為400噸時,每噸的平均處理成本最低為200元,故選:D4.(2022·四川·廣安二中二模(文))某公園門票單價30元,相關(guān)優(yōu)惠政策如下:①10人(含)以上團(tuán)體購票9折優(yōu)惠;②50人(含)以上團(tuán)體購票8折優(yōu)惠;③100人(含)以上團(tuán)體購票7折優(yōu)惠;④購票總額每滿500元減100元(單張票價不優(yōu)惠).現(xiàn)購買47張門票,合理地設(shè)計購票方案,則門票費用最少為(
)A.1090元 B.1171元 C.1200元 D.1210元【答案】B【解析】分析題意可得購買47張票,最大的優(yōu)惠應(yīng)依據(jù)政策④,故可得應(yīng)分為13張門票享受政策①,34張門票享受政策④,計算即可.【詳解】由于購票人數(shù)少于50,故政策②,③不可能享受;在合理范圍內(nèi)政策④比政策①要優(yōu)惠;而原價為SKIPIF1<0,大于1000,不足1500,所以應(yīng)將47張票分為兩部分購買,其中13張門票享受政策①,34張門票享受政策④,即SKIPIF1<0,故選:B.5.(2022·北京·101中學(xué)模擬預(yù)測)根據(jù)統(tǒng)計,一名工人組裝第x件某產(chǎn)品所用的時間(單位:分鐘)為f(x)=SKIPIF1<0(A,c為常數(shù)).已知工人組裝第4件產(chǎn)品用時30分鐘,組裝第A件產(chǎn)品用時15分鐘,那么c和A的值分別是A.75,25 B.75,16 C.60,25 D.60,16【答案】D【解析】【詳解】由題意可得:f(A)=SKIPIF1<0=15,所以c=15SKIPIF1<0而f(4)=SKIPIF1<0=30,可得出SKIPIF1<0=30故SKIPIF1<0=4,可得A=16從而c=15SKIPIF1<0=60故答案為D二、填空題1.(2022·河北·模擬預(yù)測)勞動實踐是大學(xué)生學(xué)習(xí)知識?鍛煉才干的有效途徑,更是大學(xué)生服務(wù)社會?回報社會的一種良好形式某大學(xué)生去一服裝廠參加勞動實踐,了解到當(dāng)該服裝廠生產(chǎn)的一種衣服日產(chǎn)量為x件時,售價為s元/件,且滿足SKIPIF1<0,每天的成本合計為SKIPIF1<0元,請你幫他計算日產(chǎn)量為___________件時,獲得的日利潤最大,最大利潤為___________萬元.【答案】
200
7.94【解析】【分析】將利潤表示為關(guān)于SKIPIF1<0的一個二次函數(shù),求出該函數(shù)的最值即可.【詳解】由題意易得日利潤SKIPIF1<0,故當(dāng)日產(chǎn)量為200件時,獲得的日利潤最大,最大利潤為7.94萬元,故答案為:200,7.94.2.(2022·北京市第九中學(xué)模擬預(yù)測)調(diào)查顯示,垃圾分類投放可以帶來約SKIPIF1<0元/千克的經(jīng)濟(jì)效益.為激勵居民垃圾分類,某市準(zhǔn)備給每個家庭發(fā)放一張積分卡,每分類投放SKIPIF1<0積分SKIPIF1<0分,若一個家庭一個月內(nèi)垃圾分類投放總量不低于SKIPIF1<0,則額外獎勵SKIPIF1<0分(SKIPIF1<0為正整數(shù)).月底積分會按照SKIPIF1<0元/分進(jìn)行自動兌換.①當(dāng)SKIPIF1<0時,若某家庭某月產(chǎn)生SKIPIF1<0生活垃圾,該家庭該月積分卡能兌換_____元;②為了保證每個家庭每月積分卡兌換的金額均不超過當(dāng)月垃圾分類投放帶來的收益的SKIPIF1<0%,則SKIPIF1<0的最大值為___________.【答案】
SKIPIF1<0
SKIPIF1<0【解析】【分析】①計算出該家庭月底的積分,再拿積分乘以SKIPIF1<0可得出該家庭該月積分卡能兌換的金額;②設(shè)每個家庭每月產(chǎn)生的垃圾為SKIPIF1<0,每個家庭月底月積分卡能兌換的金額為SKIPIF1<0元,分SKIPIF1<0、SKIPIF1<0兩種情況討論,計算SKIPIF1<0的表達(dá)式,結(jié)合SKIPIF1<0可求得SKIPIF1<0的最大值.【詳解】①若某家庭某月產(chǎn)生SKIPIF1<0生活垃圾,則該家庭月底的積分為SKIPIF1<0分,故該家庭該月積分卡能兌換SKIPIF1<0元;②設(shè)每個家庭每月產(chǎn)生的垃圾為SKIPIF1<0,每個家庭月底月積分卡能兌換的金額為SKIPIF1<0元.若SKIPIF1<0時,SKIPIF1<0恒成立;若SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0.故SKIPIF1<0的最大值為SKIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0.3.(2022·重慶·模擬預(yù)測)我國的酒駕標(biāo)準(zhǔn)是指車輛駕駛員血液中的酒精含量大于或者等于SKIPIF1<0,已知一駕駛員某次飲酒后體內(nèi)每SKIPIF1<0血液中的酒精含量SKIPIF1<0(單位:SKIPIF1<0)與時間SKIPIF1<0(單位:SKIPIF1<0)的關(guān)系是:當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,那么該駕駛員在飲酒后至少要經(jīng)過__________SKIPIF1<0才可駕車.【答案】SKIPIF1<0【解析】【分析】根據(jù)二次函數(shù)的單調(diào)性和反比例函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)有最大值SKIPIF1<0,所以當(dāng)SKIPIF1<0時,飲酒后體內(nèi)每SKIPIF1<0血液中的酒精含量小于SKIPIF1<0,當(dāng)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減,令SKIPIF1<0,因此飲酒后SKIPIF1<0小時體內(nèi)每SKIPIF1<0血液中的酒精含量等于SKIPIF1<0,故答案為:SKIPIF1<04.(2022·河南·襄城縣教育體育局教學(xué)研究室二模(文))某景區(qū)套票原價300元/人,如果多名游客組團(tuán)購買套票,則有如下兩種優(yōu)惠方案供選擇:方案一:若人數(shù)不低于10,則票價打9折;若人數(shù)不低于50,則票價打8折;若人數(shù)不低于100,則票價打7折.不重復(fù)打折.方案二:按原價計算,總金額每滿5000元減1000元.已知一個旅游團(tuán)有47名游客,若可以兩種方案搭配使用,則這個旅游團(tuán)購票總費用的最小值為___________元.【答案】11710【解析】【分析】由題意分析方案一和方案二的單人票價,可得用方案二先購買34張票,剩余13張用方案一,費用最小,從而可求出其最小值【詳解】方案一:滿10人可打9折,則單人票價為270元,方案二:滿5000元減1000元,按原價計算SKIPIF1<0,則滿5000元至少湊齊17人,SKIPIF1<0,則單人票價為SKIPIF1<0,滿10000元時,SKIPIF1<0,則需34人,單人票價為241元,滿15000元時,SKIPIF1<0,人數(shù)不足,因為SKIPIF1<0,所以用方案二先購買34張票,剩余13不滿足方案二,但滿足方案一,所以總費用為SKIPIF1<0(元),故答案為:11710三、解答題1.(2022·上海交大附中模擬預(yù)測)自2017年起,上海市開展中小河道綜合整治,全面推進(jìn)“人水相依,延續(xù)風(fēng)貌,豐富設(shè)施,精彩活動”的整治目標(biāo).某科學(xué)研究所針對河道整治問題研發(fā)了一種生物復(fù)合劑.這種生物復(fù)合劑入水后每1個單位的活性隨時間SKIPIF1<0(單位:小時)變化的函數(shù)為SKIPIF1<0,已知當(dāng)SKIPIF1<0時,SKIPIF1<0的值為28,且只有在活性不低于3.5時才能產(chǎn)生有效作用.(1)試計算每1個單位生物復(fù)合劑入水后產(chǎn)生有效作用的時間;(結(jié)果精確到SKIPIF1<0小時)(2)由于環(huán)境影響,每1個單位生物復(fù)合劑入水后會產(chǎn)生損耗,設(shè)損耗剩余量SKIPIF1<0關(guān)于時間SKIPIF1<0的函數(shù)為SKIPIF1<0,記SKIPIF1<0為每1個單位生物復(fù)合劑的實際活性,求出SKIPIF1<0的最大值.(結(jié)果精確到0.1)【答案】(1)SKIPIF1<0小時(2)6.5【解析】【分析】(1)由SKIPIF1<0求出SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0,解不等式SKIPIF1<0可得答案;(2)當(dāng)SKIPIF1<0時,令SKIPIF1<0,SKIPIF1<0,再令SKIPIF1<0,面積SKIPIF1<0由基本不等式求得最值;當(dāng)SKIPIF1<0時,SKIPIF1<0,利用單調(diào)性可得SKIPIF1<0的最大值,再比較可得答案.(1)由于SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即產(chǎn)生有效作用的時間段為SKIPIF1<0,故產(chǎn)生有效作用的時間為SKIPIF1<0小時.(2)當(dāng)SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,同時SKIPIF1<0,再令SKIPIF1<0,則SKIPIF1<0,面積SKIPIF1<0,由基本不等式,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,則SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則此時SKIPIF1<0在SKIPIF1<0是單調(diào)遞減的,則最大值在SKIPIF1<0時取到,SKIPIF1<0,綜上所述,SKIPIF1<0在SKIPIF1<0上的最大值為6.5.2.(2022·上海靜安·二模)某便民超市經(jīng)銷一種小袋裝地方特色桃酥食品,每袋桃酥的成本為6元,預(yù)計當(dāng)一袋桃酥的售價為SKIPIF1<0元SKIPIF1<0時,一年的銷售量為SKIPIF1<0萬袋,并且全年該桃酥食品共需支付SKIPIF1<0萬元的管理費.一年的利潤SKIPIF1<0一年的銷售量SKIPIF1<0售價SKIPIF1<0(一年銷售桃酥的成本SKIPIF1<0一年的管理費).(單位:萬元)(1)求該超市一年的利潤SKIPIF1<0(萬元)與每袋桃酥食品的售價SKIPIF1<0的函數(shù)關(guān)系式;(2)當(dāng)每袋桃酥的售價為多少元時,該超市一年的利潤SKIPIF1<0最大,并求出SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)售價為9元時,利潤最大為9萬元【解析】【分析】(1)直接由題目所給關(guān)系即可求得利潤SKIPIF1<0(萬元)與售價SKIPIF1<0的函數(shù)關(guān)系式;(2)將函數(shù)關(guān)系式變形整理得SKIPIF1<0,結(jié)合基本不等式即可求出最大值.(1)由題意知,分公司一年的利潤L(萬元)與售價x的函數(shù)關(guān)系式為SKIPIF1<0;(2)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號,此時SKIPIF1<0最大為9萬元.當(dāng)每件產(chǎn)品的售價為9元時,該分公司一年的利潤最大,且最大利潤9萬元.題型三:常見的函數(shù)模型:冪指對型一、單選題1.(2022·江西師大附中三模(文))某種病毒的繁殖速度快?存活時間長.已知a個這種病毒在t天后將達(dá)到SKIPIF1<0個,且經(jīng)過4天后病毒的數(shù)量會達(dá)到原來的2倍.若再過t天后病毒的數(shù)量達(dá)到原來的8倍,則SKIPIF1<0(
)A.4 B.8 C.12 D.16【答案】B【解析】【分析】根據(jù)題意解指數(shù)方程可得參數(shù)SKIPIF1<0的值,通過函數(shù)值為原來的8倍解出SKIPIF1<0,即可得結(jié)果.【詳解】由題意得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.設(shè)經(jīng)過t天后,病毒的數(shù)量達(dá)到原來的8倍,則有SKIPIF1<0,解得SKIPIF1<0.所以再過SKIPIF1<0天,病毒的數(shù)量達(dá)到原來的8倍.故選:B.2.(2022·遼寧葫蘆島·二模)某生物興趣小組為研究一種紅鈴蟲的產(chǎn)卵數(shù)y與溫度x(單位:℃)的關(guān)系.現(xiàn)收集了7組觀測數(shù)據(jù)SKIPIF1<0得到下面的散點圖:由此散點圖,在20℃至36℃之間,下面四個回歸方程類型中最適宜作為紅鈴蟲產(chǎn)卵數(shù)y和溫度x的回歸方程類型的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】結(jié)合散點圖的特點,選擇合適的方程類型作為回歸方程類型.【詳解】由散點圖可以看出紅鈴蟲產(chǎn)卵數(shù)y隨著溫度x的增長速度越來越快,所以SKIPIF1<0最適宜作為紅鈴蟲產(chǎn)卵數(shù)y和溫度x的回歸方程類型.故選:C3.(2022·湖南衡陽·三模)深度學(xué)習(xí)是人工智能的一種具有代表性的實現(xiàn)方法,它是以神經(jīng)網(wǎng)絡(luò)為出發(fā)點的.在神經(jīng)網(wǎng)絡(luò)優(yōu)化中,指數(shù)衰減的學(xué)習(xí)率模型為SKIPIF1<0,其中SKIPIF1<0表示每一輪優(yōu)化時使用的學(xué)習(xí)率,SKIPIF1<0表示初始學(xué)習(xí)率,SKIPIF1<0表示衰減系數(shù),SKIPIF1<0表示訓(xùn)練迭代輪數(shù),SKIPIF1<0表示衰減速度.已知某個指數(shù)衰減的學(xué)習(xí)率模型的初始學(xué)習(xí)率為0.5,衰減速度為18,且當(dāng)訓(xùn)練迭代輪數(shù)為18時,學(xué)習(xí)率衰減為0.4,則學(xué)習(xí)率衰減到0.1以下(不含0.1)所需的訓(xùn)練迭代輪數(shù)至少為(參考數(shù)據(jù):SKIPIF1<0)(
)A.128 B.130 C.132 D.134【答案】B【解析】【分析】由已知可得SKIPIF1<0,再由SKIPIF1<0,結(jié)合指對數(shù)關(guān)系及對數(shù)函數(shù)的性質(zhì)求解即可.【詳解】由題設(shè),SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以所需的訓(xùn)練迭代輪數(shù)至少為130次.故選:B4.(2022·北京·二模)某工廠產(chǎn)生的廢氣經(jīng)過濾后排放,過濾過程中廢氣的污染物含量P(單位:SKIPIF1<0)與時間t(單位:h)間的關(guān)系為SKIPIF1<0,其中SKIPIF1<0,k是正的常數(shù).如果在前SKIPIF1<0污染物減少SKIPIF1<0,那么再過SKIPIF1<0后污染物還剩余(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)給定的函數(shù)模型及已知可得SKIPIF1<0,再計算SKIPIF1<0后污染物剩余量.【詳解】由題設(shè),SKIPIF1<0,可得SKIPIF1<0,再過5個小時,SKIPIF1<0,所以最后還剩余SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二甲基亞砜行業(yè)發(fā)展中的技術(shù)創(chuàng)新與突破
- 數(shù)字時代下的文化創(chuàng)新與融合發(fā)展
- 2025年經(jīng)濟(jì)法基礎(chǔ)勞動合同法律制度案例分析試卷
- 廣東省揭陽市2016屆高三第二次高考模擬文綜歷史試卷
- 理賠業(yè)務(wù)風(fēng)險培訓(xùn)頻率風(fēng)險基礎(chǔ)知識點歸納
- T-NAIC 005-2024 婺派建筑保護(hù)與利用設(shè)計規(guī)范
- 大連市金保工程課件
- 非遺傳承中的家庭與社會責(zé)任
- 貨場倉儲物流項目總體規(guī)劃
- 生態(tài)環(huán)境對小麥抗白粉病育種的影響分析
- 上海上海市第二社會福利院招聘筆試歷年典型考題及考點附答案解析
- R語言數(shù)據(jù)可視化分析報告(附代碼數(shù)據(jù))
- 2024湖南中考物理二輪中考題型研究 專題二 坐標(biāo)圖像類題專項訓(xùn)練 (含答案)
- 江蘇省無錫市普通高中2023-2024學(xué)年高二下學(xué)期期末調(diào)研考試數(shù)學(xué)試題【含答案】
- 2024年包鋼(集團(tuán))公司幼教管理處招聘筆試參考題庫附帶答案詳解
- 1.1 都勻毛尖茶概況
- GB/T 19936.2-2024齒輪FZG試驗程序第2部分:高極壓油的相對膠合承載能力FZG階梯加載試驗A10/16.6R/120
- 胸腔穿刺術(shù)流程圖
- 《生物質(zhì)熱電聯(lián)產(chǎn)工程設(shè)計規(guī)范》
- 康復(fù)設(shè)備一覽表
- JJG 643-2024標(biāo)準(zhǔn)表法流量標(biāo)準(zhǔn)裝置
評論
0/150
提交評論