版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市寶山區(qū)通河中學高一上數(shù)學期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.化簡
的值為A. B.C. D.2.已知直線,若,則的值為()A.8 B.2C. D.-23.函數(shù)對于定義域內(nèi)任意,下述四個結(jié)論中,①②③④其中正確的個數(shù)是()A.4 B.3C.2 D.14.已知命題“存在,使得等式成立”是假命題,則實數(shù)的取值范圍是()A. B.C. D.5.對于每個實數(shù)x,設(shè)取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標分別為,則的取值范圍是()A. B.C. D.6.若函數(shù),則()A. B.C. D.7.若函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),則()A.函數(shù)是奇函數(shù) B.函數(shù)是偶函數(shù)C.函數(shù)是偶函數(shù) D.函數(shù)是奇函數(shù)8.已知函數(shù)為奇函數(shù),則()A.-1 B.0C.1 D.29.形如的函數(shù)因其圖像類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)有最小值,則“囧函數(shù)”與函數(shù)的圖像交點個數(shù)為()A.1 B.2C.4 D.610.設(shè)全集,集合,則等于A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.函數(shù)一段圖象如圖所示,這個函數(shù)的解析式為______________.12.已知sinα+cosα=,α∈(-π,0),則tanα=________.13.函數(shù)一段圖象如圖所示則的解析式為______14.若直線與垂直,則________15.函數(shù)的定義域是___________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.設(shè)n是不小于3的正整數(shù),集合,對于集合Sn中任意兩個元素.定義.若,則稱A,B互為相反元素,記作或(1)若n=3,A=(0,1,0),B=(1,1,0),試寫出,,以及A·B的值;(2)若,證明:;(3)設(shè)k是小于n的正奇數(shù),至少含有兩個元素的集合,且對于集合M中任意兩個不同的元素,都有,試求集合M中元素個數(shù)的所有可能的取值17.已知函數(shù)(1)求的值域;(2)當時,關(guān)于的不等式有解,求實數(shù)的取值范圍18.已知向量為不共線向量,若向量與共線求k的值19.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點(1)求證:PA∥平面BMD;(2)求證:AD⊥PB;(3)若AB=PD=2,求點A到平面BMD的距離20.已知函數(shù)(1)判斷函數(shù)的奇偶性,并證明你的結(jié)論;(2)解不等式21.計算下列各式:(1)(式中字母均為正數(shù));(2).
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】根據(jù)兩角和的余弦公式可得:,故答案為C.2、D【解析】根據(jù)兩條直線垂直,列方程求解即可.【詳解】由題:直線相互垂直,所以,解得:.故選:D【點睛】此題考查根據(jù)兩條直線垂直,求參數(shù)的取值,關(guān)鍵在于熟練掌握垂直關(guān)系的表達方式,列方程求解.3、B【解析】利用指數(shù)的運算性質(zhì)及指數(shù)函數(shù)的單調(diào)性依次判讀4個序號即可.【詳解】,①正確;,,②錯誤;,由,且得,故,③正確;由為減函數(shù),可得,④正確.故選:B.4、D【解析】由題意可得,由的范圍可得的范圍,再求其補集即可求解.【詳解】由可得,因為,所以,若命題“存在,使得等式成立”是假命題,則實數(shù)的取值范圍是,故選:D.5、C【解析】如圖,作出函數(shù)的圖象,其中,設(shè)與動直線的交點的橫坐標為,∵圖像關(guān)于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關(guān)系,,因此只要確定的范圍就能得到的范圍.6、C【解析】應用換元法求函數(shù)解析式即可.【詳解】令,則,所以,即.故選:C7、C【解析】根據(jù)奇偶性的定義判斷即可;【詳解】解:因為函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),所以、,對于A:令,則,故是非奇非偶函數(shù),故A錯誤;對于B:令,則,故為奇函數(shù),故B錯誤;對于C:令,則,故為偶函數(shù),故C正確;對于D:令,則,故為偶函數(shù),故D錯誤;故選:C8、C【解析】利用函數(shù)是奇函數(shù)得到,然后利用方程求解,,則答案可求【詳解】解:函數(shù)為奇函數(shù),當時,,所以,所以,,故故選:C.9、C【解析】令,根據(jù)函數(shù)有最小值,可得,由此可畫出“囧函數(shù)”與函數(shù)在同一坐標系內(nèi)的圖象,由圖象分析可得結(jié)果.【詳解】令,則函數(shù)有最小值∵,∴當函數(shù)是增函數(shù)時,在上有最小值,∴當函數(shù)是減函數(shù)時,在上無最小值,∴.此時“囧函數(shù)”與函數(shù)在同一坐標系內(nèi)的圖象如圖所示,由圖象可知,它們的圖象的交點個數(shù)為4.【點睛】本題考查對數(shù)函數(shù)的性質(zhì)和函數(shù)圖象的應用,考查學生畫圖能力和數(shù)形結(jié)合的思想運用,屬中檔題.10、A【解析】,=二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】由圖象的最大值求出A,由周期求出ω,通過圖象經(jīng)過(,0),求出φ,從而得到函數(shù)的解析式【詳解】由函數(shù)的圖象可得A=2,T==4π,∴解得ω=∵圖象經(jīng)過(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z,取k=0∴φ,故答案為:y=2sin(x)12、.【解析】由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【點睛】該題考查的是有關(guān)三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.13、【解析】由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得到函數(shù)的解析式【詳解】由函數(shù)的圖象的頂點的縱坐標可得,再由函數(shù)的周期性可得,再由五點法作圖可得,故函數(shù)的解析式為,故答案為【點睛】本題主要考查函數(shù)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,屬于中檔題14、【解析】根據(jù)兩直線垂直的等價條件列方程,解方程即可求解.【詳解】因為直線與垂直,所以,解得:,故答案為:.15、【解析】利用根式、分式的性質(zhì)求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)(2)證明見解析(3)集合M中元素的個數(shù)只可能是2【解析】(1)根據(jù)定義直接求解即可;(2)設(shè),進而結(jié)合題意得,,再計算即可;(3)假設(shè)為集合M中的三個不相同的元素,進而結(jié)合題意,推出矛盾,得出假設(shè)不成立,即集合M中至多有兩個元素,且時符合題意,故集合M中元素的個數(shù)只可能是2【小問1詳解】解:因為若,則稱A,B互為相反元素,記作或,所以,所以.【小問2詳解】解:設(shè),由,可得所以,當且僅當,即時上式“=”成立由題意可知即所以【小問3詳解】解:解法1:假設(shè)為集合M中的三個不相同的元素則即又由題意可知或1,i=1,2,,n恰有k個1,與n-k個0設(shè)其中k個等于1項依次為n-k個等于0的項依次為由題意可知所以,同理所以即因為由(2)可知因為所以,設(shè),由題意可知.所以,得與為奇數(shù)矛盾所以假設(shè)不成立,即集合M中至多有兩個元素當時符合題意所以集合M中元素的個數(shù)只可能是2解法2:假設(shè)為集合M中的三個不相同的元素則即又由題意可知恰有k個1,與n-k個0設(shè)其中k個等于1的項依次為n-k個等于0的項依次由題意可知所以①同理②因為所以,①—②得又因為為奇數(shù)與矛盾所以假設(shè)不成立,即集合M中至多有兩個元素當時符合題意所以集合M中元素的個數(shù)只可能是2【點睛】關(guān)鍵點點睛:本題第三問解題的關(guān)鍵在于利用反證法證明當為集合M中的三個不相同的元素時,結(jié)合題意推出與為奇數(shù)矛盾,進而得集合M中至多有兩個元素,再舉例當時符合題意即可.17、(1)(2)【解析】(1)由.令,換元后再配方可得答案;(2)由得,令,轉(zhuǎn)化為時有解的問題可得答案【小問1詳解】,令,則,所以的值域為【小問2詳解】,即,令,則,即在上有解,當時,m無解;當時,可得,因為,當且僅當時,等號成立,所以.綜上,實數(shù)m的取值范圍為18、或【解析】由與共線存在實數(shù)使,再根據(jù)平面向量的基本定理構(gòu)造一個關(guān)于的方程,解方程即可得到k的值.【詳解】,或【點睛】本題主要考查的是平面向量的基本定理,與共線存在實數(shù)使是判定兩個向量共線最常用的方法,是基礎(chǔ)題.19、(1)詳見解析;(2)詳見解析;(3).【解析】(1)設(shè)AC和BD交于點O,MO為三角形PAC的中位線可得MO∥PA,再利用直線和平面平行的判定定理,證得結(jié)論(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,證得AD⊥BD,可證AD⊥平面PBD,從而證得結(jié)論(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h【詳解】(1)證明:設(shè)AC和BD交于點O,則由底面ABCD是平行四邊形可得O為AC的中點由于點M為PC的中點,故MO為三角形PAC的中位線,故MO∥PA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,則AD=1,BD=AB?sin∠BAD=2,由于平面BMD經(jīng)過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離取CD得中點N,則MN⊥平面ABCD,且MNPD=1設(shè)點C到平面MBD的距離為h,則h為所求由AD⊥PB可得BC⊥PB,故三角形PBC為直角三角形由于點M為PC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,?()?MN?(BD×MO)×h,故有()×1?()?h,解得h【點睛】本題主要考查直線和平面平行的判定定理,直線和平面垂直的性質(zhì),用等體積法求點到平面的距離,體現(xiàn)了數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學思想,屬于中檔題20、(1)f(x)為奇函數(shù),證明見解析;(2)當a>1時,不等式的解集為(0,1);當0<a<1時,不等式的解集為(﹣1,0)【解析】(1)先求出函數(shù)的定義域,再求出f(﹣x)與f(x)的關(guān)系,利用函數(shù)的奇偶性的定義,得出結(jié)論;(2)分類討論底數(shù)的范圍,再利用函數(shù)的定義域和單調(diào)性,求得x的范圍【小問1詳解】對于函數(shù),由,求得﹣1<x<1,故函數(shù)的定義域為(﹣1,1),再根據(jù)可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版無人駕駛技術(shù)研發(fā)公司股權(quán)轉(zhuǎn)讓及合作生產(chǎn)合同3篇
- 二零二五年網(wǎng)絡(luò)安全違約責任承擔詳細合同解析3篇
- 二零二五年鋼板樁租賃與施工方案優(yōu)化合同3篇
- 二零二五版水電安裝工程節(jié)能改造與施工合同2篇
- 二零二五版房產(chǎn)代持權(quán)違約責任合同范本3篇
- 二零二五年窗簾藝術(shù)中心窗簾定制合同3篇
- 二零二五年度高品質(zhì)地暖系統(tǒng)安裝與維護服務合同書2篇
- 二零二五版海洋工程建設(shè)項目擔保合同3篇
- 二零二五年度酒店窗簾改造升級合同2篇
- 二零二五版服務器租賃與云存儲解決方案合同3篇
- 2024年公務員考試《公共基礎(chǔ)知識》全真模擬試題1000題及答案
- DB3301T 0382-2022 公共資源交易開評標數(shù)字見證服務規(guī)范
- 幼兒教育專業(yè)國家技能人才培養(yǎng)工學一體化課程設(shè)置方案
- 2025年會計從業(yè)資格考試電算化考試題庫及答案(共480題)
- 江蘇省無錫市2023-2024學年八年級上學期期末數(shù)學試題(原卷版)
- DL-T 5876-2024 水工瀝青混凝土應用酸性骨料技術(shù)規(guī)范
- GB/T 44889-2024機關(guān)運行成本統(tǒng)計指南
- 2024年6月英語六級考試真題及答案(第2套)
- 職業(yè)院校技能大賽(高職組)市政管線(道)數(shù)字化施工賽項考試題庫(含答案)
- 危險化學品目錄(2024版)
- 華為經(jīng)營管理-華為的股權(quán)激勵(6版)
評論
0/150
提交評論