2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)_第1頁
2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)_第2頁
2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)_第3頁
2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)_第4頁
2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年浙江省臺州市高職錄取數(shù)學(xué)沖刺卷題庫(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.下列說法中,正確的個數(shù)是()①如果兩條平行直線中的一條和一個平面相交,那么另一條直線也和這個平面相交;②一條直線和另一條直線平行,它就和經(jīng)過另一條直線的任何平面都平行;③經(jīng)過兩條異面直線中的一條直線,有一個平面與另一條直線平行;④兩條相交直線,其中一條直線與一個平面平行,則另一條直線一定與這個平面平行.

A.0B.1C.2D.3

2.已知角α的終邊上一點P(-3,4),則cosα的值為()

A.3/5B.4/5C.-3/5D.-4/5

3.不等式(x+2)(x?3)≤0的解集為()

A.?B.{x|?2≤x≤3}C.RD.{x|x≥3或x≤?2}

4.已知方程x2+px+15=0與x2-5x+q=0的解集分別是M與N,且M∩N={3},則p+q的值是()

A.14B.11C.2D.-2

5.在某次1500米體能測試中,甲、乙2人各自通過的測試的概率分別是2/5,3/4,只有一人通過的概率是()

A.3/5B.3/10C.1/20D.11/20

6.“ab>0”是“a/b>0”的()

A.充分不必要條件B.必要不充分條件C.必要不充分條件D.既不充分也不必要條件

7.已知等差數(shù)列{an}的公差為2,若a?,a?,a?成等比數(shù)列,則a?=().

A.-4B.-6C.-8D.-10

8.設(shè)集合A={1,2,3},B={1,2,4}則A的∪B=()

A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}

9.設(shè)lg2=m,lg3=n,則lg12可表示為()

A.m2nB.2m+nC.2m/nD.mn2

10.扔兩個質(zhì)地均勻的骰子,則朝上的點數(shù)之和為5的概率是()

A.1/6B.1/9C.1/12D.1/18

11.cos78°*cos18°+sin18°sin102°=()

A.-√3/2B.√3/2C.-1/2D.1/2

12.等差數(shù)列{an}的前5項和為5,a2=0則數(shù)列的公差為()

A.1B.2C.3D.4

13.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的個數(shù)是()

A.6B.7C.8D.9

14.若向量a,b,c滿足a∥b且a⊥c,則c·(a+2b)=()

A.4B.3C.2D.0

15.已知圓的方程為x2+y2-4x+2y-4=0,則圓的半徑為()

A.±3B.3C.√3D.9

16.已知點M(1,2)為拋物線y2=4x上的點,則點M到該拋物線焦點的距離為()

A.10B.8C.3D.2

17.若拋物線y2=2px(p>0)的準線與圓(x-3)2+y2=16相切,則p的值為()

A.1/2B.1C.2D.4

18.log?64-log?16等于()

A.1B.2C.4D.8

19.從甲地到乙地有3條路線,從乙地到丙地有4條路線,則從甲地經(jīng)乙地到丙地的不同路線共有()

A.3種B.4種C.7種D.12種

20.圓x2+y2-4x+4y+6=0截直線x-y-5=0所得弦長等于()

A.√6B.1C.5D.5√2/2

21.過點P(2,-1)且與直線x+y-2=0平行的直線方程是()

A.x-y-1=0B.x+y+1=0C.x-y+1=0D.x+y-1=0

22.某射擊運動員的第一次打靶成績?yōu)?,8,9,8,7第二次打靶成績?yōu)?,8,9,9,7,則該名運動員打靶成績的穩(wěn)定性為()

A.一樣穩(wěn)定B.第一次穩(wěn)定C.第二次穩(wěn)定D.無法確定

23.若直線l過點(-1,2)且與直線2x-3y+1=0平行,則l的方程是().

A.3x+2y+8=0B.2x-3y+8=0C.2x-3y-8=0D.3x+2y-8=0

24.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().

A.a>b>cB.b>c>aC.c>a>bD.c>b>a

25.在一個口袋中有除了顏色外完全相同的5個紅球3個黃球、2個藍球,從中任意取出5個球,則剛好2個紅球、2個黃球、1個藍球的概率是()

A.2/5B.5/21C.1/2D.3/5

26.拋物線y2=4x的焦點為()

A.(1,0)B.(2,0)C.(3,0)D.(4,0)

27.從2,3,5,7四個數(shù)中任取一個數(shù),取到奇數(shù)的概率為()

A.1/4B.1/2C.1/3D.3/4

28.f(-1)是定義在R上是奇函數(shù),且對任意實數(shù)x,有f(x+4)=f(x),若f(-1)=3.則f(4)+f(5)=()

A.-3B.0C.3D.6

29.圓(x-2)2+y2=4的圓心到直線x+ay-4=0距離為1,且a>0,則a=()

A.3B.2C.√2D.√3

30.將一個容量為40的樣本分成若干組,在它的頻率分布直方圖中,若其中一組的相應(yīng)的小長方形的面積是0.4,則該組的頻數(shù)等于()

A.4B.6C.10D.16

31.兩條平行直線l?:3x+4y-10=0和l?:6x+8y-7=0的距離為()

A.1B.17C.13D.13/10

32.已知定義在R上的函數(shù)F(x)=f(x)-4是奇函數(shù),且滿足f(-3)=1,則f(0)+f(3)=()

A.4B.6C.9D.11

33.數(shù)軸上的點A到原點的距離是3,則點A表示的數(shù)為()

A.3或-3B.6C.-6D.6或-6

34.若某班有5名男生,從中選出2名分別擔(dān)任班長和體育委員則不同的選法種數(shù)為()

A.5B.10C.15D.20

35.已知sinθ+cosθ=1/3,那么sin2θ的值為()

A.2√2/3B.-2√2/3C.8/9D.-8/9

36.為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進行調(diào)查,事先已了解到該地區(qū)小學(xué).初中.高中三個學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下列抽樣方法中,最合理的抽樣方法是()

A.簡單隨機抽樣B.簡單隨機抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣

37.cos70°cos50°-sin70°sin50°=()

A.1/2B.-1/2C.√3/2D.-√3/2

38.函數(shù)y=x3?x在x=1處的導(dǎo)數(shù)是()

A.2B.3C.4D.5

39.已知向量a=(x,-3),b=(3,1),若a⊥b,則x=()

A.-9B.9C.-1D.1

40.設(shè)向量a=(x,4),b=(2,-3),若a·b,則x=()

A.-5B.-2C.2D.7

41.若等差數(shù)列{an}的前n項和Sn=n2+a(a∈R),則a=()

A.-1B.2C.1D.0

42.樣本5,4,6,7,3的平均數(shù)和標準差為()

A.5和2B.5和√2C.6和3D.6和√3

43.不等式|x2-2|<2的解集是()

A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)

44.在△ABC中,角A,B,C所對應(yīng)邊為a,b,c,∠A=45°,∠C=30°,a=2,則c=()

A.1B.2C.√2D.2√2

45.若直線x+y=0與直線ax-2y+1=0互相垂直,則a的值為()

A.-2B.2C.-1D.1

46.將5封信投入3個郵筒,不同的投法共有()

A.5^3種B.3^5種C.3種D.15種

47.拋物線y2=-8x的焦點坐標是()

A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)

48.設(shè)a=log?2,b=log?2,c=log?3,則

A.a>c>bB.b>c>aC.c>b>aD.c>a>b

49.設(shè)命題p:x>3,命題q:x>5,則()

A.p是q的充分條件但不是q的必要條件

B.p是q的必要條件但不是q的充分條件

C.p是q的充要條件

D.p不是q的充分條件也不是q的必要條件

50.要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=-sin2x的圖象沿x軸()

A.向右平移Π/4個單位B.向左平移Π/4個單位C.向右平移Π/8個單位D.向左平移Π/8個單位

二、填空題(20題)51.若向量a=(1,-1),b=(2,-1),則|3a-b|=________。

52.甲乙兩人比賽飛鏢,兩人所得平均環(huán)數(shù)相同,其中甲所得環(huán)數(shù)的方差為15,乙所得的環(huán)數(shù)如下:0,1,5,9,10,那么成績較為穩(wěn)定的是________。

53.在等差數(shù)列{an}中,an=3-2n,則公差d=_____________。

54.已知平面向量a=(1,2),b=(-2,m),且a⊥b,則a+b=_________。

55.若2^x>1,則x的取值范圍是___________;

56.以兩直線x+y=0和2x-y-3=0的交點為圓心,且與直線2x-y+2=0相切的圓的標準方程方程是________。

57.不等式|1-3x|的解集是_________。

58.已知扇形的圓心角為120,半徑為15cm,則扇形的弧長為________cm。

59.已知f(x)=x+6,則f(0)=____________;

60.在等差數(shù)列{an}中,a3+a5=26,則S7的值為____________;

61.在等比數(shù)列中,q=2,a?+a?+a?=21,則S?=________。

62.已知A(1,3),B(5,1),則線段AB的中點坐標為_________;

63.已知直線方程為y=3x-5,圓的標準方程為(x+1)2+(y-2)2=25,則直線與圓的位置關(guān)系是直線與圓________(填“相切”相交”或“相離”)

64.已知數(shù)列{an}的前n項和Sn=n(n+1),則a??=__________。

65.函數(shù)y=3sin2x-1的最小值是________。

66.已知函數(shù)y=2x+t經(jīng)過點P(1,4),則t=_________。

67.在空格內(nèi)填入“充要條件”、“必要條件”、“充要條件”、或“非充分且非必要條件”⑴“x2-4=0”是“x-2=0”的_________⑵“x<1”是“x<3”的__________⑶方程ax2+bx+c=0(a≠0),“ac<0”是“方程有實根”的___________(4)“x2+y2≠0”是“x、y不全為零”的___________

68.已知5件產(chǎn)品中有3件正品,2件次品,若從中任取一件產(chǎn)品,則取出的產(chǎn)品是正品的概率等于_________;

69.不等式x2-2x≤0的解集是________。

70.小明想去參加同學(xué)會,想從3頂帽子、5件衣服、4條子中各選一樣穿戴,則共有________種搭配方法。

三、計算題(10題)71.數(shù)列{an}為等差數(shù)列,a?+a?+a?=6,a?+a?=25,(1)求{an}的通項公式;(2)若bn=a?n,求{bn}前n項和Sn;

72.已知三個數(shù)成等差數(shù)列,它們的和為9,若第三個數(shù)加上4后,新的三個數(shù)成等比數(shù)列,求原來的三個數(shù)。

73.已知sinα=1/3,則cos2α=________。

74.書架上有3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,求(1)都是數(shù)學(xué)書的概率有多大?(2)恰有1本數(shù)學(xué)書概率

75.圓(x-1)2+(x-2)2=4上的點到直線3x-4y+20=0的最遠距離是________。

76.解下列不等式x2>7x-6

77.計算:(4/9)^?+(√3+√2)?+125^(-?)

78.某社區(qū)從4男3女選2人做核酸檢測志愿者,選中一男一女的概率是________。

79.求證sin2α+sin2β?sin2αsin2β+cos2αcos22β=1;

80.已知在等差數(shù)列{an}中,a1=2,a8=30,求該數(shù)列的通項公式和前5項的和S5;

參考答案

1.C

2.C

3.B

4.B

5.D

6.C

7.B[解析]講解:等差數(shù)列中a?=a?+2d,a?=a?+3d,a?,a?,a?成等差數(shù)列,所以(a?+2d)2=a?(a?+3d),解得a?=-8,a?=-6

8.D

9.B

10.B

11.D

12.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考點:等差數(shù)列求公差.

13.C[解析]講解:集合子集的考察,首先求A∩B={0,2,4}有三個元素,則子集的個數(shù)為2^3=8,選C

14.D

15.B圓x2+y2-4x+2y-4=0,即(x-2)2+(y+1)2=9,故此圓的半徑為3考點:圓的一般方程

16.D

17.C[解析]講解:題目拋物線準線垂直于x軸,圓心坐標為(3,0)半徑為4,與圓相切則為x=?1或x=7,由于p>0,所以x=?1為準線,所以p=2

18.A

19.D

20.A由圓x2+y2-4x+4y+6=0,易得圓心為(2,-2),半徑為√2.圓心(2,-2)到直線x-y-5=0的距離為√2/2.利用幾何性質(zhì),則弦長為2√(√2)2-(√2/2)2=√6??键c:和圓有關(guān)的弦長問題.感悟提高:計算直線被圓截得弦長常用幾何法,利用圓心到直線的距離,弦長的一半,及半徑構(gòu)成直角三角形計算,即公式d2+(AB/2)2=r2,d是圓到直線的距離,r是圓半徑,AB是弦長.

21.D可利用直線平行的關(guān)系求解,與直線Ax+By+C=0平行的直線方程可表示為:Ax+By+D=0.設(shè)所求直線方程為x+y+D=0,代入P(2,1)解得D=-1,所以所求的直線方程為:x+y-1=0,故選D.考點:直線方程求解.

22.B

23.B[解析]講解:考察直線方程,平行直線方程除了常數(shù),其余系數(shù)成比例,排除A,D,直線過點(-1,2),則B

24.D[答案]D[解析]講解:重新排列10,12,14,14,15,15,16,17,17,17,算得,a=14.7.b=15,c=17答案選D

25.B

26.A拋物線方程為y2=2px(p>0),焦點為(P/2,0),2p=4,p=2c,p/2=1??键c:拋物線焦點

27.D

28.A

29.D

30.D

31.D

32.D

33.A

34.D

35.D

36.C

37.B

38.A

39.D

40.D

41.D

42.B

43.D[解析]講解:絕對值不等式的求解,-2<x2-2<2,故0<x2

44.C由正弦定理可得a/sinA=c/sinC,2/sin45°=c/sin30°,考點:正弦定理

45.B

46.B[解析]講解:由于每一封信都有三種選擇,則共有3^5種方法

47.A

48.D

49.B考查充要條件概念,x>5=>x>3,所以p是q的必要條件;又因為x>3=>x>>5,所以p不是q的充分條件,故選B.考點:充分必要條件的判定.

50.A

51.√5

52.甲

53.-2

54.(-1,3)

55.X>0

56.(x-1)2+(y+1)2=5

57.(-1/3,1)

58.10Π

59.6

60.91

61.63

62.(3,2)

63.相交

64.20

65.-4

66.2

67.(1)必要非充分條件(2)充分非必要條件(3)充分非必要條件(4)充要條件

68.3/5

69.[0,2]

70.60

71.解:(1)由題得3a?;+3d=6,2a?+9d=25,解得a?=-1,d=3,故an=a?+(n-1)d=-1+(n-1)x3=3n-4。(2)因為:bn=a?n=3×2n-4=6n-4,所以Sn=2+8+14+...+(6n-4)=(1/2)(2+6n-4)×n=3n2-n

72.解:設(shè)原來三個數(shù)為a-d,a,a+d,則(a-d)+a+(a+d)=9所以3a=9,a=3因為三個數(shù)為3-d,3,3+d又因為3-d,3,7+d成等比數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論