梁新剛-2013-火積新理論基礎(chǔ)及進展_第1頁
梁新剛-2013-火積新理論基礎(chǔ)及進展_第2頁
梁新剛-2013-火積新理論基礎(chǔ)及進展_第3頁
梁新剛-2013-火積新理論基礎(chǔ)及進展_第4頁
梁新剛-2013-火積新理論基礎(chǔ)及進展_第5頁
已閱讀5頁,還剩178頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Entransy[

]:

ItsApplicationinHeatTransfer

and

ThermodynamicSystemXin-gangLiangSchoolofAerospace,TsinghuaUniversity1ContentPart1:

Whatisentransy?Part2:OptimizationofheatconductionPart3:ThedifferencebetweenentransyoptimizationandentropyoptimizationPart4:Applicationto

heatexchanger(HX)optimizationPart5:ApplicationtothermodynamicsystemPart6:Anattempt:entransyanalysisofthermodynamiccycle--entransylossPart7Arguments2Part1:

Whatisentransy?

[火積]?3Definition-entransyInternalenergySpecificheattemperatureBodymassZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.4Physicalmeaning“Potentialenergy”ofheatinanobject;Theabilitytoreleaseheatfromanobject;Thelargestentransythatabodycouldreleaseis?UT.PotentialenergyofwaterinatankentransyHA56HotstonepotforcookingTemperatureHeatcapacityBothfactorsareimportant,notsingleone.PhysicalmeaningAnalogybetweenelectrical&heatconduction7Electricalcond.HeatconductionPotentialUe

[V]Uh=T

[K]FlowI

[C/s]Qh

[J/s]Flux

[C/m2s]

[J/m2s]Resistance

Re[

]Rh

[sK/J]Law

Uh=TElectricalCharge/storedheatQveQvh

=

McvTCapacity

Ce

=

Qve

/

Ue

Ch

=

Qvh

/

UhPotentialenergyEe=

QveUe

/2Potentialenergyofheat?PhysicalmeaningPotentialenergyofcharge8“Potentialenergy”ofheatinabodyatatemperaturePotentialenergyofchargeinacapacitance

ZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.entransyInternalenergy

massPhysicalmeaningEe=QveUe

/2

Whyisthequantity,G, calledentransy?Clausiushadcoineden-tropy(熵)forS=

Q/Tbecauseitpossesboththenatureofenergyandtransformationability.en

---prefixofenergy;tropy---rootoftransformationEn-transyforwascoinedforGh=UT/2becauseitpossesboththenatureofenergyandtransferability.en

---prefixofenergy;transy--rootoftransportGh=UT/2

wascalledheattransportpotentialcapacity9Whathappenstoentransyifheatistransferred?ItcanbeprovedInitialstatesAfterequilibrium10EntransydissipationThetotalentransyisreducedwhenheatistransferredThechangeinentransyduetoheattransferiscalledentransydissipation

11EntransydissipationWhathappensifheatistransferred?Itcanbeproved:anyspontaneousheattransferwillresultinentransydecreaseforisolatedsystem.Hence,entransydissipationcouldbe

anthermeasureoftheirreversibilityforheattransport12孤立系統(tǒng)熵增原理Entransyflow13Qf:heatexchangeatconstanttemperatureTWhenQfistransferredfromTH

toTL,

theentransydissipationisEntransyflow:Whyentransy?Anyadvantage?Anyapplicationofconvenience?14Whyentransy?Enhancement(強化)Increasingheattransferratewithinputinpower,materials,etc.Optimization(優(yōu)化)BestheattransferperformanceunderfixedinputAnyprinciple?Howtooptimize?15Whyentransy?16Constructaltheory:ABejanGivingprescribedconstructandthenoptimizingaspectratio.Minimizingthelargesttemperaturedifference.Onedimensionconductionassumptionintheconstruct.Effectiveforsymmetricstructure.OptimizationmethodsHowtodoiftherearemorethantwooutlettemperaturesorifthedomainiscomplex?Whyentransy?17Entropygeneration(EG)MinimizationBelief:Lessentropygeneration,betterheattransfer;TheNewtoncoolinglawQ=AhTforfixedQ,Tbecomesmallerunderimprovement,thenlessentropygenerationManysuccessfulapplicationsOptimizationmethodsDifferentopinionson

entropygenerationminimizationoptimization18entropygenerationlossinheat-workconversion,orexergy[火用];focusonirreversibilityfromtheviewpointofheat-workconversion.Heatistransportednotfordoingworkinmanyapplications.However,thereareConflictson

entropygenerationminimizationoptimization19TheNewtoncoolinglawQ=

AhT:ifTfixed,enhancementoroptimizationwillmakeheatexchangeincreasedQ;EGwillincreaseeitherLargerEGcorrespondslargerheattransferrate?HoweverConflictson

Minimumentropygeneration(EG)optimization20TheparadoxinHeatexchangeroptimizationBejan:effectivenessdoesnotalwaysincreaseswithdecreasingEGmonotonicallyShah:18typesofHXs,notmonotonicrelationbetweenEGandeffectiveness.HoweverConflictson

Minimumentropygeneration(EG)optimization21TheparadoxinheatexchangeroptimizationHoweverEffectivenessisnotamonotonicfunctionofEGCounterflowHXEntransycouldbeahelpondealingwithheattransferoptimization?22Part2

Optimizationofheatconduction

23EntransybalanceequationEnergyeq.HeatsourceHeatfluxMultipleTintegrateoverthewholevolume24EntransybalanceequationForconstantcvEntransyperunitvolumeFromtheGausstheorem25EntransybalanceequationEntransyvariationwithtime-EntransydissipationEntransyvariationduetoboundaryheatexchange

Entransyproductionduetoheatsource

26Entransybalanceequationentransyvariationwithtime=netentransyflowintovolumethroughboundary+netentransyduetoheatsource+entransydissipation27Entransybalanceequation28Atsteadystate,withoutheatsource00orEntransydissipationrate=entransyflowintothevolumethroughboundary

-entransyflowoutofthevolumethroughboundaryGin-Gout=

GRelationbetweenheattransfer&entransydissipationNetheatexchangethoughboundaryisrelatedtotheentransydissipationinthevolume!EntransydissipationNetentransyflowintoVthoughboundary2930Steadystatewithoutheatsourcewhereboundaryflux-weightedtemperaturedifferenceQ0:totalnetheattransportbetweenthesourceandsinkboundaryForgivenboundaryflowRelationbetweenheattransfer&entransydissipationqin:heatfluxintoboundaryareaSqin

qout:heatfluxoutofboundaryareaSqout

31SteadystatewithoutheatsourceMinimumentransydissipation

smallesttemperaturedifferenceForgivenboundaryflowRelationbetweenheattransfer&entransydissipation32SteadystatewithoutheatsourceForgivenboundarytemperatureRelationbetweenheattransfer&entransydissipationMaximumentransydissipation

largestheatexchange33MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionRelationbetweenheattransfer&entransydissipationOptimizationapplicationHowtodistributegoodconductingmaterialstoobtainlowestaveragetemperature?Volumetopointheatconduction,steadysateUniformheatsourceThereisonlyoneoutletattemperatureT0Limitedgoodconductivity34OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionQisthetotalheatgeneratedinV,whichisgiven35OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionEntransydissipationinVNetentransyflowintoVSmallerentransydissipation,loweraveragetemperature.Howtofindtheoptimaltemperaturedistributionwithlimitationongoodconductingmaterials?36MinimumConstraintPurpose:findtheminimumentransydissipationundertheconstraint37OptimizationapplicationVolumetopointheatconductionRequirementsPurpose:findtheminimumentransydissipationundertheconstraint38OptimizationapplicationVolumetopointheatconductionConstituteaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsPursuingacalculusofvariation,takingconductivitykasafunction.39OptimizationapplicationVolumetopointheatconductionWehaveThisistherule/principletodistributegoodconductingHowtousethisrule?40OptimizationapplicationVolumetopointheatconductionHowtousetherule(4)Returntostep(2)untilallthegoodconductingmaterialsareusedup.(1)Fillinthedomainwithbasematerials,lowconductivity;(2)Solvetheenergyequationtoobtainthetemperaturefieldandheatfluxfield;(3)Putagoodconductingmaterialsattheplacewherethetemperaturegradientislargest;Thereareotherimprovedmethodsofputtinggoodconductingmaterials41OptimizationapplicationVolumetopointheatconductionThestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsnon-uniformheatsourceQQ12.5%oftotalVolumeOptimizationapplicationVolumetopointheatconduction42Thestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsYoucanusedifferentprocedurebasedontheruleandcouldobtaindifferentstructuresOptimizationapplicationVolumetopointheatconduction43Entransydissipation-basedthermalresistanceTheentransydissipationextremumprinciplesdivideintotwocases,complex.MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionCouldwemakeanimprovementandexpressthemmoresimply?44ThermalresistanceConventionaldefinitionofthermalResistance:

R=

T/Q

Withentransydissipation,wecandefinedeffectiveresistanceforx-DsystemT1T2adiabaticT3?Itcanonlybedefinedfor1-Dsystem

Ifmanytemperatures?45Resistancewasdefinedbasedonentransydissipationandthetotalnetheatexchange.WeightedTdifferenceEntransyDissipationNetheatexchangebetweensource&sinkboundariesEntransy-dissipation-basedthermalresistanceEntransydissipation-basedthermalresistance46Entransybalanceeq.atsteadystateForfixedT,largerentransydissipation,largerheatexchange,smallerthermalresistance.ForfixedQ,smallerentransydissipation,smallertemperaturedifference,smallerthermalresistance.47Entransydissipation-basedthermalresistanceMinimumresistanceprincipleMaximumentransydissipationprinciple(forgiventemperature)Minimumentransydissipationprinciple(forgivenheatflux)Heatalwaysconductsviaminimumthermalresistance!48Part3

Thedifferencebetweenentransyoptimizationandentropyoptimization

49EntropyForanyreversiblecycleentropyEntropychangeforanyprocessfromstate1tostate2Entropygeneration50Entropybalanceeq.forheattransferEntropychangerateInternalentropygenerationEntropyflowthoughboundaryandheatsourceAtsteadystateWithoutheatsource51Entropybalanceeq.forheattransferForheatconductionthenEntropychangerateentropygenerationEntropyflowthoughboundaryEntropyduetoheatsource52Entropygenerationandheattransfer53qistheheatfluxthoughboundaryqisthatinnormaldirectionFromentropybalanceeq.QnetisthenetheatflowbetweenheatsourceandsinkboundaryEntropygenerationandheattransfer54EntropyoptimizationEntransyoptimizationForprescribedheatflowSmallerentropygeneration,SmallerentransydissipationSmallerSmallerEntropygenerationandheattransfer55EntropyoptimizationEntransyoptimizationForprescribedboundarytemperaturelargerentropygeneration,largerentransydissipationLargerQnet

LargerQnetEntropygenerationoptimizationForgivenboundaryheatflowminimizingentropygenerationistoreduce(1/T)(objective),notT;minimizingentransydissipationistoreduce

T(objective).Forgivenboundarytemperaturesmaximizing(notminimizing)entropygenerationistoincreaseheattransferrate,notT;minimizingentransydissipationistoreduceT.56Heattransferprocesscanbedividedintotwocategoriesaccordingtotheir

purposes:ClassificationofheattransferprocessOneisforheat-workconversionanditsirreversibilityismeasuredbytheentropygenerationrate.Anotherisforheatingorcoolingobjects

anditsirreversibilityismeasuredbytheentransydissipationrate57Correspondingtotwopurposesofheattransfer,therearetwokindsofoptimizationprinciplesforheattransferTheprincipleofminimumentropygenerationforoptimizationofheattransferforheat-workconversion.Theprinciple

ofminimumentransydissipation-basedthermalresistanceforoptimizationofheattransferforobjectheating.5859EntropyoptimizationFormaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsVariationwithrespecttoTRulestoarrangegoodconductingmaterialsResultcomparisonVariationwithrespecttokEntransyoptimizationResultcomparison<

averageT:150.8K

AverageT:

51.6

K

Min.entropygeneration:increaseT,reduce

(1/T);Min.entransydissipation:reduce

T.Entropyoptimization60TemperaturedistributionReduceentropygenerationreducetheabilitylossindoingworkResultcomparisonEntransyopt.Entropyopt.<averageT:150.8K

AverageT:

51.6

K

61優(yōu)化結(jié)果比較

resultΦh

/(W?K)Sgen/(W/K)Tm/KTmax/K/(1/K)Entransydissipationopt5.5×104100.751.683.02.2×10-2Entropymini.Opt.1.58×10581.7150.8194.97.1×10-3TheoptimizationobjectivesaredifferentforentransydissipationoptimizationandentropygenerationoptimizationResultcomparison62purposeheat-workconv.heating/coolingirreversibilityentropygenerationentransydissipationopt.objectiveconver.Efficiency

(1/T)transferperformance

Topt.principleminimumentropygenerationrateminimumthermalresistanceprocesstendency

dS>0

dG<0criterionofequi.

dS=0

dG=0HeattransferentropyentransyComparison:entropyandentransy63Whatdoyouthinkifentropyflowandgenerationiswroteinthisway?EntropygenerationEntropyflowEntransyflowEntransydissipation64Part4

Applicationto

heatexchanger(HX)optimization

65SomeconceptsforheatexchangerParallelflowheatexchangerCounterflowheatexchangerΔtmaxΔtmin0AtΔtmaxΔtmin0At66SomeconceptsforheatexchangerCrossflowheatexchanger67SomeconceptsforheatexchangerTheLog-MeanTemperatureDifferenceMethodΔtmaxΔtmin0AtΔtmaxΔtmin0AtHeatexchangedbetweenhotandcoldstreams(counter/parallel)K

isheattransfercoefficient,Aisareabetweenhotandcoldstream68Someconceptsforheatexchanger(HX)EffectivenessHeatexchangedxMaxpossibleheatexchange

NTU:NumberofTransferUnitsC=mc,Heatcapacityflowrateforhotandcoldstreams;mismassflowrate,cisspecificheat,h—hotstream,c—coldone.69ConventionalmethodsforthedesignofheatexchangersParallelandcounter-flowheatexchangersConvient!ConventionalHXdesigningmethodLog-MeanTemperatureDifferenceMethod(LMTD)Cross-flowandmultipassheatexchangersCorrectionfactor

isunavoidable!70ConventionalmethodsforthedesignofheatexchangersConventionalHXdesigningmethodTheEffectiveness---NTUmethodComplexexpressionsofNTUParallel:Counter-flow:71Couldwedosomethingwiththeconceptofentransy?72EntransyDissipationinheatexchangersEntransydissipationinaheatexchangerEntransydissipationestimatestheirreversibilityofheattransferinHXs.Local/totalentransydissipationrateforheattransferEntransydissipationforHX73TemperaturevariationsindifferentheatexchangersParallelflowHXCounterflowHXΔtmaxΔtmin0AtΔtmaxΔtmin0AtNonlineartemperaturedistributionalongtheheattransfersurface.TemperaturedistributioninHXHotstreamHotstreamcoldstreamcoldstream74ΔtmaxΔtmin0Qt0LineartemperaturevariationversusthetotalheattransferrateΔtmaxΔtminQtT-QdiagramandthermalresistancetemperaturevariationsvstotalheattransferrateParallelflowHXCounterflowHXEntransyDissipationEntransyDissipationThermalresistancehighlightedarea75TheinfluencefactorsonHXefficiency76

UnbalancedflowdifferentheatcapacityrateIfthesame

Non-optimalflowarrangementNon-counterflowForparallelflow,thereisalimitifonlyincreasearea.Counterflow:largerTalongflowdirection,lessarea

FiniteNTU(KA/Cmin)IncreasingareaanotherlimitTThTcQTThTcQTheentransydissipation(areasurroundedbyTcurves)becomeslesswithimprovingheatexchangeforgiveinletparameters77Applicationindatacentercoolinganalysis10121416182022242628-0.2500.250.50.7511.251.5Temperature/CHeatq/WTh,inQ0.5QTh,outTc,inTc,outTm,hTm,cToreducepowerconsumption,heatpipecanbeusedtoreplacetheinterloopcirculationIndoorairoutdoorairwaterHowtouseheatpipe?OneheatpipeTQTwoheatpipesatdifferenttemperature?Bettermatchinflowarrangement,betterperformanceorlessarea.78FlowarrangementisnotsatisfactoryIndoorairoutdoorairHeatpipeOutdoorairIndoorairHeatpipecondenserevaporatorDividetheindoor&outdoorHXsintotwoparts,usingtwoheatpipesworkingatdifferenttemperaturedatacentercoolinganalysis79Howtofindthekeypointofoptimizationforathermalsystemiftheinputheatisfixed?FindthedissipationdistributionbyT-QplotornumericalsimulationDeterminewheretheentransydissipationisdominantandtrytoreduceit:Betterarrangement,avoidingmixing,etc.80Aninstance:Xian-Yangairport81ConventionalairsupplyNo!Aninstance:Xian-Yangairport82Floorcooling:sunradiationisdirectlyremoved,avoidingmixingwithair;departurehall:coolairissuppliedatgroundlevel,hotairgoesoutatroofEntransydissipationbasedthermalresistance(EDTR)fordifferentHXParallelHXCounter-flowHXTEMAE-typeheatexchanger83TheinfluencefactorsofheatexchangerefficiencyInfluencefactorsRelatedquantitiesTypeofHeatexchangerThermalconductanceofheatexchangersHeatcapacitiesofhotandcoldfluidAllthefactorsarecontainedintheexpressionofEDTR!84AdvantagesofEDTRmethodEDTRdirectlyconnectsgeometricalstructuresandboundaryconditionstoentransydissipation.Differenttypesofheatexchangersshareageneralformulaformostheatexchangers.EDTRisconvenientfortheoptimizationofheatexchanger(networks).85Relation:resistance~effectivenessSmallerresistance,largereffectivenessifheatcapacityflowratesaregiven.or86Example1:areadistribution

ofHXsHotstreamColdstreamHX1HX2Inlettemperatureandheatcapacityflowratearegivenisknown,thesumofareaofHXs:A1+A2=constObjective:thesumofheatexchangedislargestHowtodistributeA1/A?K87Resistance

=sumofentransydissipationinHX1andHX2dividedbythesumoftotalheatexchangeThetotalentropygenerationduetoheatexchangeTheoutlettemperaturecanbeobtainedbyenergybalanceequations88Example1:ResultMinresistance

~

MaxheatexchangeMinentropygeneration

~?Heatexchange89Example2:two-streamHXs(networks)90EntransydissipationEntransydissipationnumberEDTR91

EntropygenerationnumberRevisedentropygenerationnumberEntropygeneration92Example2:two-streamHXsCase1:heatcapacityflowratesandtheinlettemperaturesareprescribedCh=5W/K,Cc=8W/K,Tin-h=360K,andTin-c=300KWithincreasing

R,NRS,NG

Sg,NS,dis:notmonotonic93Example2:two-streamHXsCase2:

theprescribedparametersaretheinlettemperatures,theratioQ/ChandtheratioQ/CcinsteadoftheheatcapacityflowratesWithincreasing

R

Sg,dis

NRS,NG,NS~

constant94Example2:two-streamHXsCase3:

theheattransferrateisprescribed.AllsixconceptsaresuitableforoptimizingTHsdesignswithaprescribedheattransferrate(theentropygeneration,entropygenerationnumber,revisedentropygenerationnumber,entransydissipation,entransydissipationnumberandEDBthermalresistance).95Example3:One-dimensionalheattransferTheoptimizationobjectiveoftheheattransferprocessisthemaximumheattransferrate96Example3:one-dimensionalheattransferSmallerresistanceRlargerQ,Sg,

dis;

NRS,NG

:constant97CasesCasedescriptionCaseIHXswithprescribedstreaminlettemperaturesandheatcapacityflowCaseIIHXswithprescribedstreaminlettemperaturesandprescribedratiosoftheheattransferratetotheheatcapacityflowratesCaseIIIHXswithprescribedheattransferrateCaseIVOnedimensionalheattransferCaseVVolume-to-PointproblemConceptCaseICaseIICaseIIICaseIVCaseVOpt.objectiveSgnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin

(1/T)NSnon-monotonicconstantmonotonic------------NRSmonotonicconstantmonotonicconstantmonotonicmin

(1/T)

disnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin

(T)ormax(Q)NGmonotonicconstantmonotonicconstant--------Rmonotonicmonotonicmonotonicmonotonicmonotonicmin

(T)ormax(Q)98GlobalOptimizationofGasRefrigerationSystemsPart5

ApplicationtoathermodynamicsystemAglobaloptimizationofgasrefrigerationsystems99GasrefrigerationsystemThefluidflowsintotheHXlandheatsthegas:T4

T1.Theheatedgasentersthecompressor:p1→p2,T1→

T2.ThegasiscooledintheHXh:T2

→T3.Thecooledgasenterstheexpander:p2

→p1,T3

→T4.C:compressorE:expanderHXh:hot-endheatexchangerHXl:cold-endheatexchanger100OptimizationofagasrefrigerationcycleDesignRequirementsTemperaturesatthehotandcoldends:Th,TlPerformanceofcompressorandexpander.Coolingcapacityofthecycle:QlMassflowrateoftheworkingmedia:ma,mh,mlDesignParametersThermalconductanceofheatHXs:(KA)h,(KA)l101OptimizationobjectivesMinimizethecost,e.g.theheattransferarea,ofexchanger,

whenthenetpowerconsumptionisgiven:Minimizethe

netpowerconsumption,whenthecostofexchangerisgiven:102thelackofamathematicalrelationbetweengivenquantitiesanddesignparameters;individualparameteranalysiswiththeotherparametersfixedinoptimization,i.e.,“try-anderror”method.Systemoptimization?Establishthemathematicalrelationbetweenthedesignrequirementsanddesignparameters.Thekeypointoftheoptimizationproblem:103TheoreticalanalysisCompressionincompressorExpansioninexpanderHeattransferinHXlHeattransferinHXh104T-qdiagramforheatexchangers

Theshadowarea

istheentransydissipationrateinaHX.105TheentransydissipationrateinHXsisalsothefunctionofthethermalconductanceofHX,(KA),andtheheatcapacityratesofhotandcoldfluids,Ch=mhcp,h

andCc

=mccp,cCombiningtwoequations:ApplythisrelationtothehotandcoldendHXs106ApplytotheHXatthehotendChThenCaisheatcapacityflowrateofgas107ApplytotheHXatthecoldend108ThermodynamicanalysisnC

:polytrophicindexCompresionprocessExpansionprocessTherelationsbetweentemperaturesareestablished109HeattransferanalysisThermodynamicanalysis110Combiningbothheattransferandthermodynamicrelations,wetheoreticallyestablishthemathematicalrelationbetweenallthedesignparametersandtherequirements.Thisrelationmakesthetheoreticalglobaloptimizationfortherefrigerationsystemspossible!111OptimizationmodelBasedontherelationabove,theoptimizationproblemisconvertedintoaconditionalextremumproblem:whereT1

andT2arefunctionsaboutdesignparameters112ConstructaLagrange

function:OptimizationEquations:Tofindoptimalparameters113OptimizationresultsGivenquantities:Th=303K,Tl=273K,Ch

=400W/K,Cl=250W/K,Ql=1000W,Wnet=500W,FC=50WParametersCaW/K(KA)hW/K(KA)lW/K∑(KA)W/KResults913.528.028.656.6Optimizationresults:114TheΣ(KA)reachesitsminimumwhendesignparametersequaltotheoptimizedvalues.(KA)h115Theoptimalthermalconductanceversusthenetpowerconsumptions116Thebasicideaintheaboveapplication?Applyentransydissipationrelationtosetuprelationbetweenparameters,andconstraint,sothatwecanmakeatheoreticalderivationtofindtheoptimalparameters.117Part6

Anattempt:entransyanalysisofthermodynamiccycle--entransyloss

118Work

WEnergybalance119Heat

QEntransybalance120

TheprocessentransyHeatentransy:entransychangedueheatexchangeWorkentransy:entransychangeduetoinput/outputworkBothcanaffectinternalenergyandthusentransyEntransystateHeatentransyprocessWorkentransyprocessTermnatureTheCarnotcycleACarnotengineworksbetweenheatreservoirswithtemperaturesTH,TL.ItreceiveheatQH–CfromTH,releaseheatQL–CtoTL,andoutputW.121EntransyflowfromTH:

EntransyflowintoTL:PartoftheentransyflowfromTHisdeliveredintoTL,andtherestisusedinoutputtingwork:122GWC,theworkentransy,isthelargestconversionalentransybecauseWCislargest(Carnotcyle).TheCarnotcycleTheCarnotcycleforidealgasFourprocesses1-2:isothermalexpansion,receivingheat2-3:adiabaticexpansion3-4:isothermalcompression,releasingheat4-1:adiabaticcompression123TheCarnotcycleforidealgas1-2:isothermalexpansion,receivingheat124Integratefrom1to2TheCarnotcycleforidealgas2-3:adiabaticexpansion125Integratefrom2to3TheCarnotcycleforidealgas3-4:isothermalcompression

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論