版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省泉州市南安市僑光中學2024屆數(shù)學高一上期末注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.定義域為的函數(shù)滿足,當時,,若時,對任意的都有成立,則實數(shù)的取值范圍是()A. B.C. D.2.已知向量,則ABC=A30 B.45C.60 D.1203.已知,則的值為()A B.1C. D.4.已知,,,則a,b,c的大小關系是A. B.C. D.5.若函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移1個單位長度后,得到函數(shù)g(x)的圖象,則g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx6.我國在文昌航天發(fā)射場用長征五號運載火箭成功發(fā)射探月工程端娥五號探測器,順利將探測器送入預定軌道,經過兩次軌道修正,嫦娥五號順利進入環(huán)月軌道飛行,嫦娥五號從橢圓形環(huán)月軌道變?yōu)榻鼒A形環(huán)月軌道,若這時把近圓形環(huán)月軌道看作圓形軌道,嫦娥五號距離月表400千米,已知月球半徑約為1738千米,則嫦娥五號繞月每旋轉弧度,飛過的路程約為()()A.1069千米 B.1119千米C.2138千米 D.2238千米7.已知直線、、與平面、,下列命題正確的是()A若,則 B.若,則C.若,則 D.若,則8.對于函數(shù),下列說法正確的是A.函數(shù)圖象關于點對稱B.函數(shù)圖象關于直線對稱C.將它的圖象向左平移個單位,得到的圖象D.將它的圖象上各點的橫坐標縮小為原來的倍,得到的圖象9.某公司位員工的月工資(單位:元)為,,…,,其均值和方差分別為和,若從下月起每位員工的月工資增加元,則這位員工下月工資的均值和方差分別為A., B.,C, D.,10.如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是()A. B.C. D.11.對于每個實數(shù)x,設取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標分別為,則的取值范圍是()A. B.C. D.12.已知函數(shù),若,,,則()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知(其中且為常數(shù))有兩個零點,則實數(shù)的取值范圍是___________.14.已知函數(shù),的部分圖象如圖所示,其中點A,B分別是函數(shù)的圖象的一個零點和一個最低點,且點A的橫坐標為,,則的值為________.15.函數(shù)的最小值是________.16.將函數(shù)圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式為________.三、解答題(本大題共6小題,共70分)17.已知向量,1若
,共線,求x的值;2若,求x的值;3當時,求與夾角的余弦值18.設全集為,,,求:(1)(2)(3)19.已知集合,.(1)若,求;(2)在①,②,③,這三個條件中任選一個作為條件,求實數(shù)的取值范圍.(注意:如果選擇多個條件分別解答,則按第一個解答計分)20.設平面向量,,函數(shù)(Ⅰ)求時,函數(shù)的單調遞增區(qū)間;(Ⅱ)若銳角滿足,求的值21.已知函數(shù),若區(qū)間上有最大值5,最小值2.(1)求的值(2)若,在上單調,求的取值范圍.22.已知命題,且,命題,且,(1)若,求實數(shù)a的取值范圍;(2)若p是q的充分條件,求實數(shù)a的取值范圍
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由可求解出和時,的解析式,從而得到在上的最小值,從而將不等式轉化為對恒成立,利用分離變量法可將問題轉化為,利用二次函數(shù)單調性求得在上的最大值,從而得到,進而求得結果.【詳解】當時,時,當時,,時,時,,即對恒成立即:對恒成立令,,,解得:故選:B2、A【解析】由題意,得,所以,故選A【考點】向量的夾角公式【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關的問題3、A【解析】知切求弦,利用商的關系,即可得解.【詳解】,故選:A4、A【解析】根據(jù)對數(shù)函數(shù)的性質,確定的范圍,即可得出結果.【詳解】因為單調遞增,所以,又,所以.故選A【點睛】本題主要考查對數(shù)的性質,熟記對數(shù)的性質,即可比較大小,屬于基礎題型.5、A【解析】觀察函數(shù)圖像,求得,再結合函數(shù)圖像的平移變換即可得解.詳解】解:由圖可知,,即,又,所以,即,又由圖可知,所以,又,即即,將函數(shù)f(x)的圖象向左平移1個單位長度后,得到函數(shù)g(x)的圖象,則,故選:A.【點睛】本題考查了利用函數(shù)圖像求解析式,重點考查了函數(shù)圖像的平移變換,屬基礎題.6、D【解析】利用弧長公式直接求解.【詳解】嫦娥五號繞月飛行半徑為400+1738=2138,所以嫦娥五號繞月每旋轉弧度,飛過的路程約為(千米).故選:D7、D【解析】利用線線,線面,面面的位置關系,以及垂直,平行的判斷和性質判斷選項.【詳解】A.若,則或異面,故A不正確;B.缺少垂直于交線這個條件,不能推出,故B不正確;C.由垂直關系可知,或相交,或是異面,故C不正確;D.因,所以平面內存在直線,若,則,且,所以,故D正確.故選:D8、B【解析】,所以點不是對稱中心,對稱中心需要滿足整體角等于,,A錯.,所以直線是對稱軸,對稱軸需要滿足整體角等于,,B對.將函數(shù)向左平移個單位,得到的圖像,C錯.將它的圖像上各點的橫坐標縮小為原來的倍,得到的圖像,D錯,選B.(1)對于和來說,對稱中心與零點相聯(lián)系,對稱軸與最值點聯(lián)系.的圖象有無窮多條對稱軸,可由方程解出;它還有無窮多個對稱中心,它們是圖象與軸的交點,可由,解得,即其對稱中心為(2)三角函數(shù)圖像平移:路徑①:先向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(x+φ)的圖象;然后使曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象路徑②:先將曲線上各點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)y=sinωx的圖象;然后把曲線向左(φ>0)或向右(φ<0)平移個單位長度,得到函數(shù)y=sin(ωx+φ)的圖象;最后把曲線上各點的縱坐標變?yōu)樵瓉淼腁倍(橫坐標不變),這時的曲線就是y=Asin(ωx+φ)的圖象9、D【解析】均值為;方差為,故選D.考點:數(shù)據(jù)樣本的均值與方差.10、D【解析】根據(jù)三視圖還原該幾何體,然后可算出答案.【詳解】由三視圖可知該幾何體是半徑為1的球和底面半徑為1,高為3的圓柱的組合體,故其表面積為球的表面積與圓柱的表面積之和,即故選:D11、C【解析】如圖,作出函數(shù)的圖象,其中,設與動直線的交點的橫坐標為,∵圖像關于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關系,,因此只要確定的范圍就能得到的范圍.12、A【解析】可判斷在單調遞增,根據(jù)單調性即可判斷.【詳解】當時,單調遞增,,,,.故選:A.二、填空題(本大題共4小題,共20分)13、【解析】設,可轉化為有兩個正解,進而可得參數(shù)范圍.【詳解】設,由有兩個零點,即方程有兩個正解,所以,解得,即,故答案為:.14、##【解析】利用條件可得,進而利用正弦函數(shù)的圖象的性質可得,再利用正弦函數(shù)的性質即求.【詳解】由題知,設,則,∴,∴,∴,將點代入,解得,又,∴.故答案為:.15、2【解析】直接利用基本不等式即可得出答案.【詳解】解:因為,所以,當且僅當,即時,取等號,所以函數(shù)的最小值為2.故答案為:2.16、.【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得出結論.【詳解】將函數(shù)圖象上所有的點向右平行移動個單位長度,可得函數(shù)為,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)為.故答案為:.三、解答題(本大題共6小題,共70分)17、(1);(2);(3)【解析】(1)根據(jù)題意,由向量平行的坐標公式可得,解可得的值,即可得答案;(2)若,則有,利用數(shù)量積的坐標運算列方程,解得的值即可;(3)根據(jù)題意,由的值可得的坐標,由向量的坐標計算公式可得和的值,結合,計算可得答案【詳解】根據(jù)題意,向量,,若,則有,解可得若,則有,又由向量,,則有,即,解可得.根據(jù)題意,若,則有,,【點睛】本題主要考查兩個向量共線、垂直的性質,兩個向量坐標形式的運算,兩個向量夾角公式的應用,屬于中檔題18、(1);(2);(3).【解析】(1)根據(jù)集合的交集的概念得到結果;(2)根據(jù)集合的補集的概念得到結果;(3)先求AB的并集,再根據(jù)補集的概念得到結果.解析:(1)(2)(3)19、(1);(2).【解析】(1)根據(jù)并集的概念和運算,求得.(2)三個條件都是表示,由此列不等式組,解不等式組求得的取值范圍.【詳解】(1)當時,,所以.(2)三個條件、、都表示,所以,解得,所以實數(shù)的取值范圍為【點睛】本小題主要考查集合并集的概念和運算,考查根據(jù)集合的包含關系求參數(shù)的取值范圍,屬于基礎題.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用向量的數(shù)量積結合兩角和與差的三角函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,利用正弦函數(shù)的單調增區(qū)間,求得時函數(shù)f(x)的單調遞增區(qū)間;(Ⅱ)若銳角α滿足,可得cos的值,然后求的值【詳解】解:(Ⅰ)由得,其中單調遞增區(qū)間為,可得,∴時f(x)的單調遞增區(qū)間為(Ⅱ),∵α為銳角,∴【點睛】本題考查向量的數(shù)量積以及三角函數(shù)的化簡求值,考查了二倍角公式的應用,考查轉化思想以及計算能力,屬于中檔題21、(1)或;(2).【解析】(1)分和兩種情況討論,根據(jù)單調性的不同分別代入求值即可;(2)易知也為二次函數(shù),若要在區(qū)間上單調,則對稱軸在區(qū)間外即可.【詳解】(1)由可得二次函數(shù)的對稱軸為,①當時,在上為增函數(shù),可得,所以,當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度醫(yī)院門診部承包經營服務合同3篇
- 2025年度海洋工程承包勞務服務協(xié)議3篇
- 2025年物業(yè)公司物業(yè)費收入權轉讓合同3篇
- 2025版高端景觀工程毛石材料供應合作協(xié)議4篇
- XX公司2024年度采購協(xié)議樣本版B版
- 二零二五版數(shù)據(jù)中心網(wǎng)絡安全設備安裝協(xié)議2篇
- 二零二五年度鐵路客票運輸合同樣本3篇
- 2024綠色照明推廣與實施合同
- 游戲化教學法在小學生閱讀能力培養(yǎng)中的應用
- 文化背景下創(chuàng)新金融產品的市場反應研究
- 2024年國家公務員考試公共基礎知識復習題庫及答案(共三套)
- 《社會工作實務》全冊配套完整課件3
- 單位違反會風會書檢討書
- 2024年4月自考00832英語詞匯學試題
- 《電力用直流電源系統(tǒng)蓄電池組遠程充放電技術規(guī)范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化運維服務信息化運維方案
- 汽車修理廠員工守則
- 公安交通管理行政處罰決定書式樣
- 10.《運動技能學習與控制》李強
- 1神經外科分級護理制度
評論
0/150
提交評論