福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省永春一中、培元中學、季延中學、石光中學四校2024屆高一數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為A.1010.1 B.10.1C.lg10.1 D.2.已知,,,則a、b、c的大小關系為()A. B.C. D.3.若冪函數(shù)f(x)=xa圖象過點(3,9),設,,t=-loga3,則m,n,t的大小關系是()A. B.C. D.4.著名數(shù)學家、物理學家牛頓曾提出:物體在空氣中冷卻,如果物體的初始溫度為,空氣溫度為,則分鐘后物體的溫度(單位:)滿足:.若常數(shù),空氣溫度為,某物體的溫度從下降到,大約需要的時間為()(參考數(shù)據(jù):)A.分鐘 B.分鐘C.分鐘 D.分鐘5.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.8π B.16πC. D.6.在人類用智慧架設的無數(shù)座從已知通向未知的金橋中,用二分法求方程的近似解是其中璀璨的一座.已知為銳角的內角,滿足,則()A. B.C. D.7.若動點.分別在直線和上移動,則線段的中點到原點的距離的最小值為()A. B.C. D.8.已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A'B'C'D'(如圖所示),其中A'D'=2,B'C'=4,A'B'=1,則直角梯形DC邊的長度是A.5 B.2C.25 D.9.如果角的終邊在第二象限,則下列結論正確的是A. B.C. D.10.已知為上的奇函數(shù),,在為減函數(shù).若,,,則a,b,c的大小關系為A. B.C. D.11.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知角的終邊經(jīng)過點,且,則的值為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知兩點,,以線段為直徑的圓經(jīng)過原點,則該圓的標準方程為____________.14.如圖,在正方體中,、分別是、上靠近點的三等分點,則異面直線與所成角的大小是______.15.的值是________16.已知直線,互相平行,則__________.三、解答題(本大題共6小題,共70分)17.已知定義在上的函數(shù)是奇函數(shù)(1)求函數(shù)的解析式;(2)判斷的單調性,并用單調性定義證明18.如圖,一個半徑為4米的筒車按逆時針方向每分鐘轉1圈,筒車的軸心O距水面的高度為2米.設筒車上的某個盛水筒W到水面的距離為d(單位:米)(在水面下則d為負數(shù)).若以盛水筒W剛浮出水面時開始計算時間,則d與時間t(單位:分鐘)之間的關系為.(1)求的值;(2)求盛水筒W出水后至少經(jīng)過多少時間就可到達最高點?(3)某時刻(單位:分鐘)時,盛水筒W在過O點的豎直直線的左側,到水面的距離為5米,再經(jīng)過分鐘后,盛水筒W是否在水中?19.已知圓,直線(1)直線l一定經(jīng)過哪一點;(2)若直線l平分圓C,求k的值;(3)若直線l與圓C相交于A,B,求弦長的最小值及此時直線的方程20.在三棱錐中,和是邊長為等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.21.已知直線經(jīng)過直線與直線的交點,且與直線垂直.(1)求直線的方程;(2)若直線與圓相交于兩點,且,求的值.22.如圖,正方體的棱長為,連接,,,,,,得到一個三棱錐.求:(1)三棱錐的表面積;(2)三棱錐的體積

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識、信息處理能力、閱讀理解能力以及指數(shù)對數(shù)運算.2、A【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的知識判斷出a、b、c的范圍即可.【詳解】因為,,所以故選:A3、D【解析】由冪函數(shù)的圖象過點(3,9)求出a的值,再比較m、n、t的大小【詳解】冪函數(shù)f(x)=xa圖象過點(3,9),∴3a=9,a=2;,∴m>n>t故選D【點睛】本題考查了冪函數(shù)的圖象與性質的應用問題,是基礎題4、D【解析】由已知條件得出,,,代入等式,求出即可得出結論.【詳解】由題知,,,所以,,可得,所以,,.故選:D.5、A【解析】由三視圖還原直觀圖得到幾何體為高為4,底面半徑為2圓柱體的一半,即可求出體積.【詳解】由三視圖知:幾何體直觀圖為下圖圓柱體:高為h=4,底面半徑r=2圓柱體的一半,∴,故選:A6、C【解析】設設,則在單調遞增,再利用零點存在定理即可判斷函數(shù)的零點所在的區(qū)間,也即是方程的根所在的區(qū)間.【詳解】因為為銳角的內角,滿足,設,則在單調遞增,,在取,得,,因為,所以的零點位于區(qū)間,即滿足的角,故選:C【點睛】關鍵點點睛:本題解題的關鍵點是令,根據(jù)零點存在定理判斷函數(shù)的零點所在的區(qū)間.7、C【解析】先分析出M的軌跡,再求到原點的距離的最小值.【詳解】由題意可知:M點的軌跡為平行于直線和且到、距離相等的直線l,故其方程為:,故到原點的距離的最小值為.故選:C【點睛】解析幾何中與動點有關的最值問題一般的求解思路:①幾何法:利用圖形作出對應的線段,利用幾何法求最值;②代數(shù)法:把待求量的函數(shù)表示出來,利用函數(shù)求最值.8、B【解析】根據(jù)斜二測畫法,原來的高變成了45°方向的線段,且長度是原高的一半,∴原高為AB=2而橫向長度不變,且梯形ABCD是直角梯形,∴DC=故選B9、B【解析】由題意結合三角函數(shù)的性質確定所給結論是否正確即可.【詳解】角的終邊在第二象限,則,AC錯誤;,B正確;當時,,,D錯誤本題選擇B選項.【點睛】本題主要考查三角函數(shù)符號,二倍角公式及其應用等知識,意在考查學生的轉化能力和計算求解能力.10、C【解析】由于為奇函數(shù),故為偶函數(shù),且在上為增函數(shù).,所以,故選C.11、D【解析】根據(jù)同角三角函數(shù)關系式,化簡,結合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【詳解】根據(jù)同角三角函數(shù)關系式而所以故的終邊在第四象限故選:D【點睛】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎題.12、B【解析】根據(jù)點,先表示出該點和原點之間的距離,再根據(jù)三角函數(shù)的定義列出等式,解方程可得答案.【詳解】因為角的終邊經(jīng)過點,則,因為,所以,且,解得,故選:B二、填空題(本大題共4小題,共20分)13、【解析】由以線段為直徑的圓經(jīng)過原點,則可得,求得參數(shù)的值,然后由中點坐標公式求所求圓的圓心,用兩點距離公式求所求圓的直徑,再運算即可.【詳解】解:由題意有,,又以線段為直徑的圓經(jīng)過原點,則,則,解得,即,則的中點坐標為,即為,又,即該圓的標準方程為,故答案為.【點睛】本題考查了圓的性質及以兩定點為直徑的圓的方程的求法,重點考查了運算能力,屬基礎題.14、【解析】連接,可得出,證明出四邊形為平行四邊形,可得,可得出異面直線與所成角為或其補角,分析的形狀,即可得出的大小,即可得出答案.【詳解】連接、、,,,在正方體中,,,,所以,四邊形為平行四邊形,,所以,異面直線與所成的角為.易知為等邊三角形,.故答案為:.【點睛】本題考查異面直線所成角的計算,一般利用平移直線法,選擇合適的三角形求解,考查計算能力,屬于中等題.15、【解析】根據(jù)誘導公式以及特殊角的三角函數(shù)值求解.【詳解】解:故答案為:【點睛】本題考查誘導公式以及特殊角的三角函數(shù)值,解答的關鍵是熟練記憶公式,屬于基礎題.16、【解析】由兩直線平行的充要條件可得:,即:,解得:,當時,直線為:,直線為:,兩直線重合,不合題意,當時,直線為:,直線為:,兩直線不重合,綜上可得:.三、解答題(本大題共6小題,共70分)17、(1);(2)在上是減函數(shù),證明見解析【解析】(1)根據(jù)奇函數(shù)的定義即可求出結果;(2)設,且,然后與,作差,通過因式分解判斷正負,然后根據(jù)單調性的概念即可得出結論.【詳解】(1)∵是定義在上的奇函數(shù),∴,∴,此時,,是奇函數(shù),滿足題意∴(2),在上是減函數(shù)設,且,則,∵,∴,,,∴,即,∴在上是減函數(shù)18、(1);(2)分鐘;(3)再經(jīng)過分鐘后盛水筒不在水中.【解析】(1)先結合題設條件得到,,求得,再利用初始值計算初相即可;(2)根據(jù)盛水筒達到最高點時,代入計算t值,再根據(jù),得到最少時間即可;(3)先計算時,根據(jù)題意,利用同角三角函數(shù)的平方關系求,再由分鐘后,進而計算d值并判斷正負,即得結果.【詳解】解:(1)由題意知,,即,所以,由題意半徑為4米,筒車的軸心O距水面的高度為2米,可得:,當時,,代入得,,因為,所以;(2)由(1)知:,盛水筒達到最高點時,,當時,,所以,所以,解得,因為,所以,當時,,所以盛水筒出水后至少經(jīng)過分鐘就可達到最高點;(3)由題知:,即,由題意,盛水筒W在過O點的豎直直線的左側,知,所以,所以,所以,再經(jīng)過分鐘后,所以再經(jīng)過分鐘后盛水筒不在水中.【點睛】本題的解題關鍵在于準確求解出三角函數(shù)模型的解析式,才能利用三角函數(shù)性質解決實際問題,突破難點.19、(1)(2)(3)弦長的最小值為,此時直線的方程為【解析】(1)由可求出結果;(2)轉化為圓心在直線上可求出結果;(3)當時,弦長最小,根據(jù)垂直關系求出直線斜率,根據(jù)點斜式求出直線的方程,利用勾股定理可求出最小弦長.【詳解】(1)由得得,所以直線l一定經(jīng)過點.(2)因為直線l平分圓C,所以圓心在直線上,所以,解得.(3)依題意可知當時,弦長最小,此時,所以,所以,即,圓心到直線的距離,所以.所以弦長的最小值為,此時直線的方程為.【點睛】關鍵點點睛:(3)中,將弦長最小轉化為是解題關鍵.20、(1)見解析(2)見解析(3).【解析】由三角形中位線定理,得出,結合線面平行的判定定理,可得平面PAC;等腰和等腰中,證出,而,由勾股定理的逆定理,得,結合,可得平面ABC;由易知PO是三棱錐的高,算出等腰的面積,再結合錐體體積公式,可得三棱錐的體積【詳解】,D分別為AB,PB的中點,又平面PAC,平面PAC平面如圖,連接OC,O為AB中點,,,且同理,,又,,得、平面ABC,,平面平面ABC,D為PB的中點,結合,得棱錐的高為,體積為【點睛】本題給出特殊三棱錐,求證線面平行、線面垂直并求錐體體積,考查了線面平行、線面垂直的判定與性質和錐體體積公式等知識,屬于中檔題21、(1);(2)或.【解析】(1)由解得P的坐標,再求出直線斜率,即可求直線的方程;(2)若直線與圓:相交由垂徑定理列方程求解即可.【詳解】(1)由得所以.因為,所以,所以直線的方程為,即.(2)由已知可得:圓心到直線的距離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論