




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題3.2函數(shù)的單調(diào)性與最值練基礎(chǔ)練基礎(chǔ)1.(2021·全國高一課時(shí)練習(xí))函數(shù)f(x)=SKIPIF1<0在R上()A.是減函數(shù) B.是增函數(shù)C.先減后增 D.先增后減【答案】B【解析】畫出函數(shù)圖像即可得解.【詳解】選B.畫出該分段函數(shù)的圖象,由圖象知,該函數(shù)在R上是增函數(shù).故選:B.2.(2021·全國高一課時(shí)練習(xí))若定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不相等的實(shí)數(shù)a,b,總有SKIPIF1<0>0成立,則必有()A.f(x)在R上是增函數(shù) B.f(x)在R上是減函數(shù)C.函數(shù)f(x)先增后減 D.函數(shù)f(x)先減后增【答案】A【解析】根據(jù)條件可得當(dāng)a<b時(shí),f(a)<f(b),或當(dāng)a>b時(shí),f(a)>f(b),從而可判斷.【詳解】由SKIPIF1<0>0知f(a)-f(b)與a-b同號(hào),即當(dāng)a<b時(shí),f(a)<f(b),或當(dāng)a>b時(shí),f(a)>f(b),所以f(x)在R上是增函數(shù).故選:A.3.(2021·全國高一課時(shí)練習(xí))設(shè)函數(shù)f(x)是(-∞,+∞)上的減函數(shù),則()A.f(a)>f(2a) B.f(a2)<f(a)C.f(a2+a)<f(a) D.f(a2+1)<f(a)【答案】D【解析】利用SKIPIF1<0排除ABC,作差可知SKIPIF1<0,根據(jù)單調(diào)性可知D正確.【詳解】當(dāng)SKIPIF1<0時(shí),選項(xiàng)A、B、C都不正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0,故D正確.故選:D4.(2021·西藏高三二模(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)函數(shù)為奇函數(shù)且在SKIPIF1<0上單調(diào)遞減可得SKIPIF1<0求解.【詳解】易知SKIPIF1<0為SKIPIF1<0上的奇函數(shù),且在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0,得SKIPIF1<0,于是得SKIPIF1<0,解得SKIPIF1<0.故選:C.5.(2021·廣西來賓市·高三其他模擬(理))已知定義在R上的偶函數(shù)SKIPIF1<0滿足在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意作出函數(shù)SKIPIF1<0的草圖,將SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0,利用數(shù)形結(jié)合法求解.【詳解】因?yàn)槎x在R上的偶函數(shù)SKIPIF1<0滿足在SKIPIF1<0內(nèi)單調(diào)遞增,所以SKIPIF1<0滿足在SKIPIF1<0內(nèi)單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0.作出函數(shù)SKIPIF1<0的草圖如下:由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<0.故選:D6.(2021·黑龍江哈爾濱市·哈師大附中高三三模(文))已知函數(shù)SKIPIF1<0()A.是奇函數(shù),SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),SKIPIF1<0單調(diào)遞減C.是偶函數(shù),SKIPIF1<0單調(diào)遞減 D.是偶函數(shù),SKIPIF1<0單調(diào)遞增【答案】D【解析】利用奇偶性和單調(diào)性的定義判斷即可【詳解】解:定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為偶函數(shù),任取SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故選:D7.(2021·全國高三月考(理))若SKIPIF1<0是奇函數(shù),且在SKIPIF1<0上是減函數(shù),又SKIPIF1<0,則SKIPIF1<0的解集是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0得到SKIPIF1<0,再由函數(shù)在SKIPIF1<0上是減函數(shù),作出函數(shù)SKIPIF1<0的圖象,再由SKIPIF1<0,等價(jià)于SKIPIF1<0,利用數(shù)形結(jié)合法求解.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù).作出函數(shù)SKIPIF1<0的大致圖象如圖所示,而SKIPIF1<0,等價(jià)于SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.綜上,SKIPIF1<0的解集是SKIPIF1<0.故選:B8.(2021·全國高三專題練習(xí)(文))已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0是偶函數(shù),遞增區(qū)間是SKIPIF1<0B.SKIPIF1<0是偶函數(shù),遞減區(qū)間是SKIPIF1<0C.SKIPIF1<0是奇函數(shù),遞減區(qū)間是SKIPIF1<0D.SKIPIF1<0是奇函數(shù),遞增區(qū)間是SKIPIF1<0【答案】C【解析】將函數(shù)解析式化為分段函數(shù)型,畫出函數(shù)圖象,數(shù)形結(jié)合即可判斷;【詳解】解:將函數(shù)SKIPIF1<0去掉絕對(duì)值得SKIPIF1<0,畫出函數(shù)SKIPIF1<0的圖象,如圖,觀察圖象可知,函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,故函數(shù)SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞減,故選:C9.(2021·寧夏銀川市·高三二模(文))設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是偶函數(shù),且在SKIPIF1<0單調(diào)遞減C.是奇函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】B【解析】利用定義可判斷函數(shù)SKIPIF1<0的奇偶性,化簡函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式,利用函數(shù)單調(diào)性的性質(zhì)可判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以,函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由于函數(shù)SKIPIF1<0、SKIPIF1<0在SKIPIF1<0上均為減函數(shù),所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故選:B.10.(2021·全國高一課時(shí)練習(xí))已知y=f(x)是定義在區(qū)間(-2,2)上單調(diào)遞減的函數(shù),若f(m-1)>f(1-2m),則m的取值范圍是_______.【答案】SKIPIF1<0【解析】結(jié)合函數(shù)定義域和函數(shù)的單調(diào)性列不等式求解即可.【詳解】由題意得:SKIPIF1<0解得SKIPIF1<0<m<SKIPIF1<0.故答案為:SKIPIF1<0練提升TIDHNEG練提升TIDHNEG1.(2021·黑龍江大慶市·大慶實(shí)驗(yàn)中學(xué)高二月考(文))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0為遞增函數(shù),則頭數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)定義域和單調(diào)性可知SKIPIF1<0,再根據(jù)SKIPIF1<0時(shí)SKIPIF1<0的單調(diào)性判斷出SKIPIF1<0,由此求解出SKIPIF1<0的取值范圍..【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0時(shí),即SKIPIF1<0,由單調(diào)性可知SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),若SKIPIF1<0單調(diào)遞增,則只需SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,綜上可知SKIPIF1<0的取值范圍是:SKIPIF1<0,故選:D.2.(2021·上海高三二模)已知函數(shù)SKIPIF1<0滿足:對(duì)任意SKIPIF1<0,都有SKIPIF1<0.命題SKIPIF1<0:若SKIPIF1<0是增函數(shù),則SKIPIF1<0不是減函數(shù);命題SKIPIF1<0:若SKIPIF1<0有最大值和最小值,則SKIPIF1<0也有最大值和最小值.則下列判斷正確的是()A.SKIPIF1<0和SKIPIF1<0都是真命題 B.SKIPIF1<0和SKIPIF1<0都是假命題C.SKIPIF1<0是真命題,SKIPIF1<0是假命題 D.SKIPIF1<0是假命題,SKIPIF1<0是真命題【答案】A【解析】利用函數(shù)單調(diào)性定義結(jié)合已知判斷命題p的真假,再利用函數(shù)最大、最小值的意義借助不等式性質(zhì)判斷命題q的真假而得解.【詳解】對(duì)于命題SKIPIF1<0:設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0上的增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0故函數(shù)SKIPIF1<0不是減函數(shù),故命題SKIPIF1<0為真命題;對(duì)于命題SKIPIF1<0在SKIPIF1<0上有最大值SKIPIF1<0,此時(shí)SKIPIF1<0,有最小值SKIPIF1<0,此時(shí)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0也有最大值和最小值,故命題SKIPIF1<0為真命題.故選:A3.(2021·全國高三二模(理))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】先求解出方程的解SKIPIF1<0,然后利用換元法(SKIPIF1<0)將SKIPIF1<0表示為關(guān)于SKIPIF1<0的函數(shù),根據(jù)條件分析SKIPIF1<0的取值范圍,然后分析出SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)的單調(diào)性,由此求解出SKIPIF1<0的取值范圍.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,綜上可知:SKIPIF1<0,故選:D.4.【多選題】(2021·湖南高三三模)關(guān)于函數(shù)SKIPIF1<0的結(jié)論正確的是()A.SKIPIF1<0在定義域內(nèi)單調(diào)遞減 B.SKIPIF1<0的值域?yàn)镽C.SKIPIF1<0在定義城內(nèi)有兩個(gè)零點(diǎn) D.SKIPIF1<0是奇函數(shù)【答案】BD【解析】根據(jù)所給函數(shù)結(jié)合函數(shù)性質(zhì),對(duì)各項(xiàng)逐個(gè)分析判斷,即可得解.【詳解】SKIPIF1<0的定義域?yàn)镾KIPIF1<0,而SKIPIF1<0和SKIPIF1<0在各段定義域內(nèi)均為減函數(shù),故SKIPIF1<0在各段上為減函數(shù),但不能說在定義域內(nèi)單調(diào)遞減,故A錯(cuò)誤;當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0的值域?yàn)镽,故B正確;令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在定義城內(nèi)有一個(gè)零點(diǎn),故C錯(cuò)誤;SKIPIF1<0,令SKIPIF1<0,易知SKIPIF1<0,此時(shí)定義域關(guān)于原點(diǎn)對(duì)稱,且SKIPIF1<0,故SKIPIF1<0為奇函數(shù),所以SKIPIF1<0是奇函數(shù),故D正確,故選:BD.5.【多選題】(2021·全國高三專題練習(xí))(多選題)已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x,y滿足f(x+y)=f(x)+f(y)+SKIPIF1<0,且fSKIPIF1<0=0,當(dāng)x>SKIPIF1<0時(shí),f(x)>0,則以下結(jié)論正確的是()A.f(0)=-SKIPIF1<0,f(-1)=-SKIPIF1<0B.f(x)為R上的減函數(shù)C.f(x)+SKIPIF1<0為奇函數(shù)D.f(x)+1為偶函數(shù)【答案】AC【解析】取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值進(jìn)而判斷A;由SKIPIF1<0判斷B;令SKIPIF1<0結(jié)合奇偶性的定義判斷C;令SKIPIF1<0,結(jié)合g(x)為奇函數(shù),得出SKIPIF1<0,從而判斷D.【詳解】由已知,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,再令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,A正確;SKIPIF1<0,SKIPIF1<0不是SKIPIF1<0上的減函數(shù),B錯(cuò)誤;令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,故C正確;令SKIPIF1<0,由C可知g(x)為奇函數(shù),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故D錯(cuò)誤.故選:AC6.【多選題】(2021·全國高一單元測(cè)試)如果函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),對(duì)于任意的SKIPIF1<0,則下列結(jié)論中正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0E.SKIPIF1<0【答案】AB【解析】利用函數(shù)單調(diào)性的定義:SKIPIF1<0與SKIPIF1<0同號(hào),判斷A、B、E的正誤;而對(duì)于C、D選項(xiàng),由于SKIPIF1<0的大小不定,SKIPIF1<0與SKIPIF1<0的大小關(guān)系不能確定.【詳解】由函數(shù)單調(diào)性的定義知,若函數(shù)SKIPIF1<0在給定的區(qū)間上是增函數(shù),則SKIPIF1<0與SKIPIF1<0同號(hào),由此可知,選項(xiàng)A,B正確,E錯(cuò)誤;對(duì)于選項(xiàng)C、D,因?yàn)镾KIPIF1<0的大小關(guān)系無法判斷,則SKIPIF1<0與SKIPIF1<0的大小關(guān)系確定也無法判斷,故C,D不正確.故選:AB.7.【多選題】(2021·全國高一課時(shí)練習(xí))(多選題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若存在區(qū)間SKIPIF1<0使得SKIPIF1<0:(1)SKIPIF1<0在SKIPIF1<0上是單調(diào)函數(shù);(2)SKIPIF1<0在SKIPIF1<0上的值域是SKIPIF1<0,則稱區(qū)間SKIPIF1<0為函數(shù)SKIPIF1<0的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有()A.SKIPIF1<0; B.SKIPIF1<0; C.SKIPIF1<0; D.SKIPIF1<0.【答案】ABD【解析】函數(shù)中存在“倍值區(qū)間”,則SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)函數(shù),SKIPIF1<0或SKIPIF1<0,對(duì)四個(gè)函數(shù)的單調(diào)性分別研究,從而確定是否存在“倍值區(qū)間”.【詳解】函數(shù)中存在“倍值區(qū)間”,則(1)SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)函數(shù),(2)SKIPIF1<0或SKIPIF1<0,對(duì)于A,SKIPIF1<0,若存在“倍值區(qū)間”SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,存在“倍值區(qū)間”SKIPIF1<0;對(duì)于B,SKIPIF1<0,若存在“倍值區(qū)間”SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,故只需SKIPIF1<0即可,故存在;對(duì)于C,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,若存在“倍值區(qū)間”SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不符題意;若存在“倍值區(qū)間”SKIPIF1<0,SKIPIF1<0不符題意,故此函數(shù)不存在“倍值區(qū)間“;對(duì)于D,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,若存在“倍值區(qū)間”SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即存在“倍值區(qū)間”SKIPIF1<0;故選:ABD.8.(2021·全國高三專題練習(xí)(理))已知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0的最小值是_____.【答案】SKIPIF1<0【解析】根據(jù)題中條件,先討論SKIPIF1<0,根據(jù)不等式恒成立求出SKIPIF1<0;再討論SKIPIF1<0,求出SKIPIF1<0得到SKIPIF1<0,再由基本不等式即可求出結(jié)果.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0是SKIPIF1<0上的增函數(shù),∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0是SKIPIF1<0上的增函數(shù),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0.9.(2021·全國高三專題練習(xí))對(duì)于滿足SKIPIF1<0的所有實(shí)數(shù)p,則使不等式SKIPIF1<0恒成立的x的取值范圍為______.【答案】SKIPIF1<0.【解析】將不等式轉(zhuǎn)化為在[-2,2]內(nèi)關(guān)于SKIPIF1<0的一次函數(shù)函數(shù)值大于0恒成立求參變量SKIPIF1<0的范圍的問題.【詳解】解:原不等式可化為SKIPIF1<0,令SKIPIF1<0,則原問題等價(jià)于SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0.即x的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.10.(2021·上海高三二模)已知SKIPIF1<0,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,則由滿足條件的SKIPIF1<0的值組成的集合是_______________.【答案】SKIPIF1<0【解析】討論SKIPIF1<0與SKIPIF1<0、SKIPIF1<0的大小關(guān)系,判斷函數(shù)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上的單調(diào)性與最小值,根據(jù)函數(shù)SKIPIF1<0的最小值列方程解出實(shí)數(shù)SKIPIF1<0的值.【詳解】分以下三種情況討論:①若SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0無最小值;②若SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0,所以,SKIPIF1<0,整理可得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0(舍去);③當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.因?yàn)镾KIPIF1<0,所以,SKIPIF1<0,整理可得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).綜上所述,實(shí)數(shù)SKIPIF1<0的取值集合為SKIPIF1<0.故答案為:SKIPIF1<0.練真題TIDHNEG練真題TIDHNEG1.(2020·全國高考真題(文))設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0()A.是奇函數(shù),且在(0,+∞)單調(diào)遞增 B.是奇函數(shù),且在(0,+∞)單調(diào)遞減C.是偶函數(shù),且在(0,+∞)單調(diào)遞增 D.是偶函數(shù),且在(0,+∞)單調(diào)遞減【答案】A【解析】根據(jù)函數(shù)的解析式可知函數(shù)的定義域?yàn)镾KIPIF1<0,利用定義可得出函數(shù)SKIPIF1<0為奇函數(shù),再根據(jù)函數(shù)的單調(diào)性法則,即可解出.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,其關(guān)于原點(diǎn)對(duì)稱,而SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù).又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增.故選:A.2.(2019·北京高考真題(文))下列函數(shù)中,在區(qū)間(0,+SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 20130-2025自屏蔽電子束輻射加工裝置
- 火災(zāi)人身傷害應(yīng)急預(yù)案(3篇)
- 加油車火災(zāi)應(yīng)急預(yù)案(3篇)
- 信息處理技術(shù)員考試實(shí)操題目及答案
- 活動(dòng)室火災(zāi)應(yīng)急疏散預(yù)案(3篇)
- 行政法規(guī)與內(nèi)部管理規(guī)章關(guān)系試題及答案
- 行政法學(xué)備考過程中的情緒管理技巧:試題及答案
- 企業(yè)文化與戰(zhàn)略執(zhí)行的協(xié)同試題及答案
- 行政管理中客戶關(guān)系與法律服務(wù)的整合試題及答案
- 平臺(tái)即服務(wù)與基礎(chǔ)設(shè)施即服務(wù)試題及答案
- 機(jī)電2023年江蘇職教高考文化綜合理論試卷
- 易普拉格科研管理系統(tǒng)
- 工程量增加補(bǔ)充協(xié)議(范本)
- 衛(wèi)生部檢驗(yàn)科三甲評(píng)審標(biāo)準(zhǔn)
- 校園安全工作考核表
- 22G101系列圖集常用點(diǎn)全解讀
- 北師大版六年級(jí)數(shù)學(xué)下冊(cè)專項(xiàng)二 圖形與幾何含答案
- MIDASM32調(diào)音臺(tái)培訓(xùn)教程歸納
- DB63-T 2152-2023公路建設(shè)項(xiàng)目代建管理規(guī)范
- 風(fēng)力擺系統(tǒng)設(shè)計(jì)
- 建筑地基處理技術(shù)規(guī)范jgj79-2012
評(píng)論
0/150
提交評(píng)論