吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省延邊朝鮮族自治州延吉市第二中學(xué)2024屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),,則函數(shù)的值域為()A. B.C. D.2.對任意正實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A. B.C. D.3.已知函數(shù)在上單調(diào)遞減,且關(guān)于的方程恰好有兩個不相等的實數(shù)解,則的取值范圍是()A. B.C. D.4.已知集合,,則集合()A. B.C. D.5.已知為上的奇函數(shù),,在為減函數(shù).若,,,則a,b,c的大小關(guān)系為A. B.C. D.6.A. B.C.1 D.7.已知點,點在軸上且到兩點的距離相等,則點的坐標(biāo)為A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)8.函數(shù)y=xcosx+sinx在區(qū)間[–π,π]的圖象大致為()A. B.C. D.9.高斯是德國著名的數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B.C. D.10.如圖,正方體中,直線與所成角大小為A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.當(dāng)時,使成立的x的取值范圍為______12.已知,則的最小值為___________13.若關(guān)于的方程只有一個實根,則實數(shù)的取值范圍是______.14.制造一種零件,甲機(jī)床的正品率為,乙機(jī)床的正品率為.從它們制造的產(chǎn)品中各任抽1件,則兩件都是正品的概率是__________15.已知向量,且,則_______.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):012300.71.63.3為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)試從中確定最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用17.如圖,在四棱錐中,,,,分別為棱,的中點,,,且.(1)證明:平面平面.(2)若四棱錐的高為3,求該四棱錐的體積.18.定義在上的奇函數(shù),已知當(dāng)時,求實數(shù)a的值;求在上解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍19.計算下列各式:(1)(2)20.某工廠以xkg/h的速度生產(chǎn)運輸某種藥劑(生產(chǎn)條件要求邊生產(chǎn)邊運輸且3<x≤10),每小時可以獲得的利潤為100(2x+1+(1)要使生產(chǎn)運輸該藥品3h獲得的利潤不低于4500元,求x(2)x為何值時,每小時獲得的利潤最?。孔钚±麧櫴嵌嗌??21.已知角的終邊經(jīng)過點,求的值;已知,求的值

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】根據(jù)給定條件換元,借助二次函數(shù)在閉區(qū)間上的最值即可作答.【詳解】依題意,函數(shù),,令,則在上單調(diào)遞增,即,于是有,當(dāng)時,,此時,,當(dāng)時,,此時,,所以函數(shù)的值域為.故選:B2、C【解析】先根據(jù)不等式恒成立等價于,再根據(jù)基本不等式求出,即可求解.【詳解】解:,即,即又當(dāng)且僅當(dāng)“”,即“”時等號成立,即,故.故選:C.3、C【解析】由在,上單調(diào)遞減,得,由在上單調(diào)遞減,得,作出函數(shù)且在上的大致圖象,利用數(shù)形結(jié)合思想能求出的取值范圍【詳解】解:由在上單調(diào)遞減,得,又由且在上單調(diào)遞減,得,解得,所以,作出函數(shù)且在上的大致圖象,由圖象可知,在上,有且僅有一個解,故在上,同樣有且僅有一個解,當(dāng),即時,聯(lián)立,即,則,解得:,當(dāng)時,即,由圖象可知,符合條件綜上:故選:C4、B【解析】解不等式求得集合、,由此求得.【詳解】,,所以.故選:B5、C【解析】由于為奇函數(shù),故為偶函數(shù),且在上為增函數(shù).,所以,故選C.6、A【解析】由題意可得:本題選擇A選項.7、D【解析】設(shè)點,根據(jù)點到兩點距離相等,列出方程,即可求解.【詳解】根據(jù)題意,可設(shè)點,因為點到兩點的距離相等,可得,即,解得,所以整理得點的坐標(biāo)為.故選:D.8、A【解析】首先確定函數(shù)的奇偶性,然后結(jié)合函數(shù)在處的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】因為,則,即題中所給的函數(shù)為奇函數(shù),函數(shù)圖象關(guān)于坐標(biāo)原點對稱,據(jù)此可知選項CD錯誤;且時,,據(jù)此可知選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項9、B【解析】先利用換元思想求出函數(shù)的值域,再分類討論,根據(jù)新定義求得函數(shù)的值域【詳解】(),令,可得,在上遞減,在上遞增,時,有最小值,又因為,所以當(dāng)時,,即函數(shù)的值域為,時,;時,;時,;的值域是故選:B【點睛】思路點睛:新定義是通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設(shè)全新的問題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識和方法,實現(xiàn)信息的遷移,達(dá)到靈活解題的目的.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.10、C【解析】連接通過線線平行將直線與所成角轉(zhuǎn)化為與所成角,然后構(gòu)造等邊三角形求出結(jié)果【詳解】連接如圖就是與所成角或其補角,在正方體中,,故直線與所成角為.故選C.【點睛】本題考查了異面直線所成角的大小的求法,屬于基礎(chǔ)題,解題時要注意空間思維能力的培養(yǎng).二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】根據(jù)正切函數(shù)的圖象,進(jìn)行求解即可【詳解】由正切函數(shù)的圖象知,當(dāng)時,若,則,即實數(shù)x的取值范圍是,故答案為【點睛】本題主要考查正切函數(shù)的應(yīng)用,利用正切函數(shù)的性質(zhì)結(jié)合函數(shù)的單調(diào)性是解決本題的關(guān)鍵12、【解析】根據(jù)基本不等式,結(jié)合代數(shù)式的恒等變形進(jìn)行求解即可.【詳解】解:因為a>0,b>0,且4a+b=2,所以有:,當(dāng)且僅當(dāng)時取等號,即時取等號,故答案為:.13、【解析】把關(guān)于的方程只有一個實根,轉(zhuǎn)化為曲線與直線的圖象有且只有一個交點,在同一坐標(biāo)系內(nèi)作出曲線與直線的圖象,結(jié)合圖象,即可求解.【詳解】由題意,關(guān)于方程只有一個實根,轉(zhuǎn)化為曲線與直線的圖象有且只有一個交點,在同一坐標(biāo)系內(nèi)作出曲線與直線的圖象,如圖所示,結(jié)合圖象可知,當(dāng)直線介于和之間的直線或與重合的直線符合題意,又由直線在軸上的截距分別為,所以實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中把方程的解轉(zhuǎn)化為直線與曲線的圖象的交點個數(shù),結(jié)合圖象求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.14、【解析】由獨立事件的乘法公式求解即可.【詳解】由獨立事件的乘法公式可知,兩件都是正品的概率是.故答案為:15、2【解析】由題意可得解得.【名師點睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的運算:.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)選擇函數(shù)模型,函數(shù)解析式為;(2)以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元.【解析】(1)對題中所給的三個函【解析】對應(yīng)其性質(zhì),結(jié)合題中所給的條件,作出正確的選擇,之后利用待定系數(shù)法求得解析式,得出結(jié)果;(2)根據(jù)題意,列出函數(shù)解析式,之后應(yīng)用配方法求得最值,得到結(jié)果.【詳解】(1)若選擇函數(shù)模型,則該函數(shù)在上為單調(diào)減函數(shù),這與試驗數(shù)據(jù)相矛盾,所以不選擇該函數(shù)模型若選擇函數(shù)模型,須,這與試驗數(shù)據(jù)在時有意義矛盾,所以不選擇該函數(shù)模型從而只能選擇函數(shù)模型,由試驗數(shù)據(jù)得,,即,解得故所求函數(shù)解析式為:(2)設(shè)超級快艇在AB段的航行費用為y(萬元),則所需時間(小時),其中,結(jié)合(1)知,所以當(dāng)時,答:當(dāng)該超級快艇以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元【點睛】該題考查的是有關(guān)函數(shù)的應(yīng)用題,涉及到的知識點有函數(shù)模型的正確選擇,等量關(guān)系式的建立,配方法求二次式的最值,屬于簡單題目.17、(1)見解析(2)9【解析】(1)根據(jù),可知,由可證明,又根據(jù)中位線可證明即可由平面與平面平行的判定定理證明平面平面.(2)利用勾股定理,求得.底面為直角梯形,求得底面積后即可由四棱錐的體積公式求得解.【詳解】(1)證明:因為為的中點,且,所以.因為,所以,所以四邊形為平行四邊形,所以.在中,因為,分別為,的中點,所以,因為,,所以平面平面.(2)因為,所以,又,所以.所以四邊形的面積為,故四棱錐的體積為.【點睛】本題考查了平面與平面平行的判定,四棱錐體積的求法,屬于基礎(chǔ)題.18、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當(dāng)時,,求出的解析式,結(jié)合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設(shè),分析的單調(diào)性可得的最大值,從而可得結(jié)果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當(dāng)時,,當(dāng)時,,又是奇函數(shù),則綜上,當(dāng)時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設(shè),分析可得在上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應(yīng)用,以及指數(shù)函數(shù)單調(diào)性的應(yīng)用,屬于綜合題19、(1);(2).【解析】(1)運用指數(shù)冪運算性質(zhì)進(jìn)行計算即可;(2)運用對數(shù)的運算公式,結(jié)合換底公式進(jìn)行求解即可.【小問1詳解】原式;【小問2詳解】原式.20、(1)[6,10];(2)當(dāng)x為4kg/h時,每小時獲得的利潤最小,最小利潤為1300元【解析】(1)由題設(shè)可得2x+1+8x-2≥15,結(jié)合3<x≤10求不等式的解集即可(2)應(yīng)用基本不等式求y=100(2x+1+8x-2)的最小值,并求出對應(yīng)的x【小問1詳解】依題意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范圍為[6,10].【小問2詳解】設(shè)每小時獲得的利潤為y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,當(dāng)2(x-2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論