


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Kalman濾波在高動態(tài)GNSS接收機(jī)中的研究與設(shè)計(jì)的中期報告IntroductionKalmanfilterisawidelyusedtechniqueforprocessingGNSSmeasurementsandimprovingtheaccuracyofGNSSpositioning.Inthismidtermreport,wediscusstheongoingresearchprojectabouttheapplicationofKalmanfilterinhigh-dynamicGNSSreceivers.Thereportcoversthefollowingaspects:1.Introductiontohigh-dynamicGNSSreceivers2.OverviewofKalmanfilter3.Kalmanfilter-basedalgorithmsforhigh-dynamicGNSSreceivers4.Simulationresultsandanalysis5.ConclusionsandfutureworkHigh-dynamicGNSSReceiversHigh-dynamicGNSSreceiversrefertodevicesthataredesignedtoprocessGNSSsignalsinhigh-dynamic,high-speed,andhigh-accelerationenvironments.Thesereceiversarecommonlyusedinapplicationssuchasaviation,landandmaritimenavigation,missileandrocketguidance,defense,andsportstracking.High-dynamicGNSSreceiversencounterseveralchallengesthatimpacttheaccuracyandreliabilityofGNSSmeasurements,suchas:1.Signalblockageandinterferencecausedbybuildings,trees,bridges,andotherobstacles.2.Highlevelsofnoiseandmultipathcausedbyreflectionsfromsurfacessuchasbuildings,water,andtheground.3.DynamicandvariableionosphericandatmosphericconditionsthatimpactthepropagationofGNSSsignals.4.Highreceiverdynamicscausedbythemovementofthereceiver,whichcanresultinrapidchangesinthereceivedsignal.Therefore,itisessentialtodevelopalgorithmsandtechniquesthatcanmitigatetheeffectofthesechallengesandimprovetheaccuracyofGNSSpositioninginhigh-dynamicenvironments.OverviewofKalmanFilterKalmanfilterisamathematicaltechniquethatusesarecursivealgorithmtoestimatethestateofasystemfromaseriesofnoisymeasurements.Thefilterestimatesthefuturestateofthesystembycombiningthecurrentstateestimatewiththenewmeasurementinformationwhiletakingintoaccountthemeasurementerrorsandthedynamicsofthesystem.Kalmanfilterusestwomaincomponents,thestatespacemodel,andthemeasurementmodel.Thestatespacemodelisusedtodescribethedynamicsofthesystem,whilethemeasurementmodelisusedtorelatethemeasurementstothestatevariables.Thefilterusesthesemodelstoestimatethestateofthesystembasedonasequenceofmeasurementsovertime.Theresultisafilteredestimateoftheunderlyingsystemstate,whichislessaffectedbynoiseanderrorsthantheindividualmeasurements.KalmanFilter-basedAlgorithmsforHigh-DynamicGNSSReceiversSeveralKalmanfilter-basedalgorithmshavebeenproposedintheliteraturetoimprovetheaccuracyandreliabilityofGNSSpositioninginhigh-dynamicenvironments.Thesealgorithmscanbeclassifiedintotwomaincategories:batchprocessingandreal-timeprocessing.BatchProcessingAlgorithmsBatchprocessingalgorithmsinvolveprocessingabatchofGNSSmeasurementsafterthedatahasbeencollected.Inthismethod,themeasurementsarecollectedoveraperiodoftimeandthenprocessedofflinetoestimatethereceiver'sposition.Themainadvantageofbatchprocessingalgorithmsisthattheyallowmoreflexibilityinthefilteringtechniqueandcanhandlelargeamountsofdata.OnepopularbatchprocessingalgorithmistheExtendedKalmanFilter(EKF).EKFisanextensionoftheKalmanfilterthatisusedwhenthestatetransitionandmeasurementmodelsarenonlinear.EKFapproximatesthenonlinearmodelsbylinearizingthemaroundthecurrentstateestimate.ThislinearapproximationallowstheuseofthestandardKalmanfilteralgorithmforstateestimation.Real-TimeProcessingAlgorithmsReal-timeprocessingalgorithmsaredesignedtoprovidereal-timeestimatesofthereceiver'sposition,velocity,andotherstatevariables.Thesealgorithmsusuallyoperateinarecursivemanner,wherethecurrentstateestimateisupdatedcontinuouslyasnewmeasurementsarrive.Onepopularreal-timeprocessingalgorithmistheUnscentedKalmanFilter(UKF).UKFisanon-linearextensionoftheKalmanfilterthatdoesnotrequirelinearapproximationsofthestatetransitionandmeasurementmodels.UKFusesasetofcarefullychosensamplepoints(calledsigmapoints)topropagatethestatedistributionthroughthenonlinearfunctions.SimulationResultsandAnalysisWeconductedasimulationstudytocomparetheperformanceofdifferentKalmanfilter-basedalgorithmsforhigh-dynamicGNSSreceivers.Thesimulationinvolvedgeneratingarandomwalktrajectoryofahigh-speedreceiverandsimulatingGNSSobservationsbasedonthetrajectory.Thesimulationparameterswerechosentomimicahigh-dynamicenvironment,withahighlevelofnoise,multipath,anddynamiceffects.WecomparedtheperformanceofEKFandUKFalgorithmsfordifferentlevelsofnoiseandmultipath.TheresultsshowedthatbothalgorithmscansignificantlyimprovetheaccuracyofGNSSpositioninginhigh-dynamicenvironments,withUKFoutperformingEKFinmostcases.ConclusionsandFutureWorkInconclusion,Kalmanfilter-basedalgorithmsareeffectiveforimprovingtheaccuracyandreliabilityofGNSSpositioninginhigh-dynamicenvironments.WehavediscussedtheapplicationofKalmanfilteralgorithmsinhigh-dynamicGNSSreceiversandcomparedtheperformanceofEKFandUKFalgorithmsusingsimulationstudies.Futureworkincludesimplementingthedevelopedalgorithmsinareal-timesystemandtestingtheminanactualhigh-dynamicenvi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 18760-2025消費(fèi)品售后服務(wù)方法與要求
- 下水井維修合同范本
- 供應(yīng)合同范本長期
- 2025年吐魯番怎么考貨運(yùn)從業(yè)資格證
- 住宅綠化養(yǎng)護(hù)合同范本
- 醫(yī)療健康服務(wù)合同范本
- 個體工商退股合同范本
- 助理編輯聘約合同范本
- 蘇州代建合同范本
- 公司改造施工合同范本
- 五年級書法上冊第一課課件
- 《贏利》精讀圖解
- 高一化學(xué)必修一試題
- 大學(xué)生職業(yè)素養(yǎng)訓(xùn)練(第六版)教案 第二單元 學(xué)習(xí)職業(yè)禮儀
- 2022年中華護(hù)理學(xué)會輸液連接裝置安全管理專家共識解讀
- 內(nèi)鏡下ESD護(hù)理配合
- DB34∕T 1644-2012 南方紅豆杉用材林栽培技術(shù)規(guī)程
- 《中華人民共和國道路運(yùn)輸條例》知識專題培訓(xùn)
- 直腸癌課件完整版本
- 2024年山東省青島市普通高中自主招生物理試卷(含解析)
- 胸部影像檢查護(hù)理常規(guī)
評論
0/150
提交評論