版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省遂寧市射洪中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.某校40名學(xué)生參加科普知識競賽(競賽分?jǐn)?shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分2.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.3.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長是()A. B. C. D.4.如圖,等腰直角三角形位于第一象限,,直角頂點(diǎn)在直線上,其中點(diǎn)的橫坐標(biāo)為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點(diǎn),則的取值范圍是().A. B. C. D.5.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應(yīng)值如表所示:x-1013y33下列結(jié)論:(1)abc<0(2)當(dāng)x>1時,y的值隨x值的增大而減小;(3)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個6.在平面直角坐標(biāo)系中,點(diǎn)P(m,2m-2),則點(diǎn)P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關(guān)于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費(fèi)標(biāo)準(zhǔn):每次租用單車行駛a小時及以內(nèi),免費(fèi)騎行;超過a小時后,每半小時收費(fèi)1元,這樣可保證不少于50%的騎行是免費(fèi)的.制定這一標(biāo)準(zhǔn)中的a的值時,參考的統(tǒng)計(jì)量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差8.點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y39.如圖,A、B、C、D四個點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°10.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點(diǎn),連接EF,點(diǎn)P是EF上的任意一點(diǎn),連接PA,PB,則PA+PB的最小值為__.12.已知線段AB=10cm,C為線段AB的黃金分割點(diǎn)(AC>BC),則BC=_____.13.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________14.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復(fù)試驗(yàn),算得摸到紅球的頻率是0.2,則袋中有________個紅球.15.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.16.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.三、解答題(共8題,共72分)17.(8分)某學(xué)校為弘揚(yáng)中國傳統(tǒng)詩詞文化,在九年級隨機(jī)抽查了若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個等級;A、B、C、D,對應(yīng)的成績分別是9分、8分、7分、6分,并將統(tǒng)計(jì)結(jié)果繪制成兩幅如圖所示的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:(1)本次抽查測試的學(xué)生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計(jì)所抽查測試學(xué)生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).18.(8分)觀察下列多面體,并把下表補(bǔ)充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點(diǎn)數(shù)61012棱數(shù)912面數(shù)58觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請寫出關(guān)系式.19.(8分)“千年古都,大美西安”.某校數(shù)學(xué)興趣小組就“最想去的西安旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點(diǎn),(景點(diǎn)對應(yīng)的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計(jì)“最想去景點(diǎn)B”的學(xué)生人數(shù).20.(8分)如圖1,點(diǎn)P是平面直角坐標(biāo)系中第二象限內(nèi)的一點(diǎn),過點(diǎn)P作PA⊥y軸于點(diǎn)A,點(diǎn)P繞點(diǎn)A順時針旋轉(zhuǎn)60°得到點(diǎn)P',我們稱點(diǎn)P'是點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”.(1)若點(diǎn)P(﹣4,2),則點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為;若點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為(﹣5,16)則點(diǎn)P的坐標(biāo)為;若點(diǎn)P(a,b),則點(diǎn)P的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的坐標(biāo)為;(2)如圖2,點(diǎn)Q是線段AP'上的一點(diǎn)(不與A、P'重合),點(diǎn)Q的“旋轉(zhuǎn)對應(yīng)點(diǎn)”是點(diǎn)Q',連接PP'、QQ',求證:PP'∥QQ';(3)點(diǎn)P與它的“旋轉(zhuǎn)對應(yīng)點(diǎn)”P'的連線所在的直線經(jīng)過點(diǎn)(,6),求直線PP'與x軸的交點(diǎn)坐標(biāo).21.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點(diǎn),已知A(2,5).求:b和k的值;△OAB的面積.22.(10分)中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補(bǔ)全頻數(shù)分布直方圖;(3)這200名學(xué)生成績的中位數(shù)會落在分?jǐn)?shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計(jì)該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?23.(12分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計(jì)費(fèi).共享汽車:無固定租金,直接以租車時間(時)計(jì)費(fèi).如圖是兩種租車方式所需費(fèi)用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達(dá)式;(2)請你幫助小麗一家選擇合算的租車方案.24.已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點(diǎn)睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關(guān)鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).2、B【解題分析】試題解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時,拋物線經(jīng)過點(diǎn)時,拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時,拋物線經(jīng)過點(diǎn)時,拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.3、D【解題分析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【題目詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.4、D【解題分析】設(shè)直線y=x與BC交于E點(diǎn),分別過A、E兩點(diǎn)作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點(diǎn),由中點(diǎn)坐標(biāo)公式求E點(diǎn)坐標(biāo),當(dāng)雙曲線與△ABC有唯一交點(diǎn)時,這個交點(diǎn)分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點(diǎn),交于點(diǎn),∴,∴,∴.故選D.5、B【解題分析】
(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結(jié)論錯誤;(3)由當(dāng)x=4和x=-1時對應(yīng)的函數(shù)值相同,即可判定結(jié)論正確;(4)當(dāng)x=3時,二次函數(shù)y=ax2+bx+c=3,即可判定正確.【題目詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當(dāng)x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當(dāng)x=4和x=-1時對應(yīng)的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當(dāng)x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結(jié)論正確的是(1)(3)(4).故選:B.【題目點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關(guān)鍵.6、B【解題分析】
根據(jù)坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)特征逐項(xiàng)分析即可.【題目詳解】A.若點(diǎn)P(m,2m-2)在第一象限,則有:m>02m-2>0解之得m>1,∴點(diǎn)P可能在第一象限;B.若點(diǎn)P(m,2m-2)在第二象限,則有:m<02m-2>0解之得不等式組無解,∴點(diǎn)P不可能在第二象限;C.若點(diǎn)P(m,2m-2)在第三象限,則有:m<02m-2<0解之得m<1,∴點(diǎn)P可能在第三象限;D.若點(diǎn)P(m,2m-2)在第四象限,則有:m>02m-2<0解之得0<m<1,∴點(diǎn)P可能在第四象限;故選B.【題目點(diǎn)撥】本題考查了不等式組的解法,坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)特征,第一象限內(nèi)點(diǎn)的坐標(biāo)特征為(+,+),第二象限內(nèi)點(diǎn)的坐標(biāo)特征為(-,+),第三象限內(nèi)點(diǎn)的坐標(biāo)特征為(-,-),第四象限內(nèi)點(diǎn)的坐標(biāo)特征為(+,-),x軸上的點(diǎn)縱坐標(biāo)為0,y軸上的點(diǎn)橫坐標(biāo)為0.7、B【解題分析】
根據(jù)需要保證不少于50%的騎行是免費(fèi)的,可得此次調(diào)查的參考統(tǒng)計(jì)量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【題目詳解】因?yàn)樾枰WC不少于50%的騎行是免費(fèi)的,所以制定這一標(biāo)準(zhǔn)中的a的值時,參考的統(tǒng)計(jì)量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.【題目點(diǎn)撥】本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標(biāo)志值中所處的位置確定的全體單位標(biāo)志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。8、D【解題分析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點(diǎn)所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【題目詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點(diǎn)C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【題目點(diǎn)撥】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點(diǎn)所在的象限是解答此題的關(guān)鍵.9、D【解題分析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)10、D【解題分析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解題分析】
將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【題目詳解】解:E,F分別是底邊AD,BC的中點(diǎn),四邊形ABCD是等腰梯形,B點(diǎn)關(guān)于EF的對稱點(diǎn)C點(diǎn),AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【題目點(diǎn)撥】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.12、(15-55).【解題分析】試題解析:∵C為線段AB的黃金分割點(diǎn)(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點(diǎn):黃金分割.13、1【解題分析】
將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【題目詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【題目點(diǎn)撥】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.14、1【解題分析】
在同樣條件下,大量反復(fù)試驗(yàn)時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,設(shè)袋中有x個紅球,列出方程=20%,求得x=1.
故答案為1.點(diǎn)睛:此題主要考查了利用頻率估計(jì)概率,本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.15、【解題分析】
設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【題目詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當(dāng)時,取得最大值,
故答案為:.【題目點(diǎn)撥】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計(jì)算能力,當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.16、【解題分析】
先求出扇形弧長,再求出圓錐的底面半徑,再根據(jù)勾股定理即可出圓錐的高.【題目詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【題目點(diǎn)撥】此題主要考查圓的弧長及圓錐的底面半徑,解題的關(guān)鍵是熟知圓的相關(guān)公式.三、解答題(共8題,共72分)17、(1)50、2;(2)平均數(shù)是7.11;眾數(shù)是1;中位數(shù)是1.【解題分析】
(1)根據(jù)A等級人數(shù)及其百分比可得總?cè)藬?shù),用C等級人數(shù)除以總?cè)藬?shù)可得a的值;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義計(jì)算可得.【題目詳解】(1)本次抽查測試的學(xué)生人數(shù)為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統(tǒng)計(jì)圖,平均數(shù)為=7.11.∵在這組數(shù)據(jù)中,1出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是1.∵將這組數(shù)據(jù)從小到大的順序排列,其中處于中間的兩個數(shù)都是1,∴=1,∴這組數(shù)據(jù)的中位數(shù)是1.【題目點(diǎn)撥】本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識點(diǎn):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).18、8,15,18,6,7;【解題分析】分析:結(jié)合三棱柱、四棱柱和五棱柱的特點(diǎn),即可填表,根據(jù)已知的面、頂點(diǎn)和棱與n棱柱的關(guān)系,可知n棱柱一定有(n+1)個面,1n個頂點(diǎn)和3n條棱,進(jìn)而得出答案,利用前面的規(guī)律得出a,b,c之間的關(guān)系.詳解:填表如下:名稱三棱柱四棱柱五棱柱六棱柱圖形頂點(diǎn)數(shù)a681011棱數(shù)b9111518面數(shù)c5678根據(jù)上表中的規(guī)律判斷,若一個棱柱的底面多邊形的邊數(shù)為n,則它有n個側(cè)面,共有n+1個面,共有1n個頂點(diǎn),共有3n條棱;故a,b,c之間的關(guān)系:a+c-b=1.點(diǎn)睛:此題通過研究幾個棱柱中頂點(diǎn)數(shù)、棱數(shù)、面數(shù)的關(guān)系探索出n棱柱中頂點(diǎn)數(shù)、棱數(shù)、面數(shù)之間的關(guān)系(即歐拉公式),掌握常見棱柱的特征,可以總結(jié)一般規(guī)律:n棱柱有(n+1)個面,1n個頂點(diǎn)和3n條棱是解題關(guān)鍵.19、(1)40;(2)想去D景點(diǎn)的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解題分析】
(1)用最想去A景點(diǎn)的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計(jì)算出最想去D景點(diǎn)的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,然后用360°乘以最想去D景點(diǎn)的人數(shù)所占的百分比即可得到扇形統(tǒng)計(jì)圖中表示“醉美旅游景點(diǎn)D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點(diǎn)的人數(shù)所占的百分比即可.【題目詳解】(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點(diǎn)的人數(shù)為40-8-14-4-6=8(人),補(bǔ)全條形統(tǒng)計(jì)圖為:扇形統(tǒng)計(jì)圖中表示“醉美旅游景點(diǎn)D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=280,所以估計(jì)“醉美旅游景點(diǎn)B“的學(xué)生人數(shù)為280人.【題目點(diǎn)撥】本題考查了條形統(tǒng)計(jì)圖:條形統(tǒng)計(jì)圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計(jì)圖和利用樣本估計(jì)總體.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點(diǎn)坐標(biāo)(﹣,0)【解題分析】
(1)①當(dāng)P(-4,2)時,OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進(jìn)而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當(dāng)P'(-5,16)時,確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當(dāng)P(a,b)時,同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進(jìn)而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【題目詳解】解:(1)如圖1,①當(dāng)P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當(dāng)P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當(dāng)P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點(diǎn)Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設(shè)yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(diǎn)(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點(diǎn)坐標(biāo)(﹣,0).【題目點(diǎn)撥】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),待定系數(shù)法,解本題的關(guān)鍵是理解新定義.21、(1)b=3,k=10;(2)S△AOB=.【解題分析】(1)由直線y=x+b與雙曲線y=相交于A、B兩點(diǎn),A(2,5),即可得到結(jié)論;(2)過A作AD⊥x軸于D,BE⊥x軸于E,根據(jù)y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根據(jù)三角形的面積公式即可得到結(jié)論.解:()把代入.∴∴.把代入,∴,∴.()∵,.∴時,,∴,.∴.又∵,∴.22、(1)70,0.2;(2)補(bǔ)圖見解析;(3)80≤x<90;(4)750人.【解題分析】分析:(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)乘以第四組頻率可得m的值,用第三組頻數(shù)除以數(shù)據(jù)總數(shù)可得n的值;(2)根據(jù)(1)的計(jì)算結(jié)果即可補(bǔ)全頻數(shù)分布直方圖;(3)根據(jù)中位數(shù)的定義,將這組數(shù)據(jù)按照從小到大的順序排列后,處于中間位置的數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))即為中位數(shù);(4)利用總數(shù)3000乘以“優(yōu)”等學(xué)生的所占的頻率即可.詳解:(1)本次調(diào)查的總?cè)藬?shù)為10÷0.05=200,則m=200×0.35=70,n=40÷200=0.2,(2)頻數(shù)分布直方圖如圖所示,(3)200名學(xué)生成績的中位數(shù)是第100、101個成績的平均數(shù),而第100、101個數(shù)均落在80≤x<90,∴這200名學(xué)生成績的中位數(shù)會落在80≤x<90分?jǐn)?shù)段,(4)該校參加本次比賽的3000名學(xué)生中成績“優(yōu)”等的約有:3000×0.25=750(人).點(diǎn)睛:本題考查讀頻數(shù)(率)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.也考查了中位數(shù)和利用樣本估計(jì)總體.23、(1)y1=kx+80,y2=30x;(2)見解析.【解題分析】
(1)設(shè)y1=kx+80,將(2,110)代入求解即可;設(shè)y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【題目詳解】解:(1)由題意,設(shè)y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達(dá)式為y1=15x+80;設(shè)y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達(dá)式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當(dāng)租車時間為小時時,兩種選擇一樣;當(dāng)租車時間大于小時時,選擇租車公司合算;當(dāng)租車時間小于小時時,選擇共享汽車合算.【題目點(diǎn)撥】本題考查了一次函數(shù)的應(yīng)用及分類討論的數(shù)學(xué)思想,解答本題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.24、(1)證明見解析(2)30°(3)QM=【解題分析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年方矩管項(xiàng)目立項(xiàng)申請報(bào)告模板
- 2024-2025學(xué)年延安市志丹縣三年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析
- 2024-2025學(xué)年咸寧市崇陽縣數(shù)學(xué)三年級第一學(xué)期期末監(jiān)測試題含解析
- 2024-2025學(xué)年西藏山南地區(qū)曲松縣三年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 畢業(yè)生個人自我鑒定400字10篇
- 股權(quán)無償轉(zhuǎn)讓協(xié)議書七篇
- 大學(xué)專業(yè)實(shí)習(xí)日志【5篇】
- 員工個人辭職申請書三篇
- 第6課《阿西莫夫短文兩篇:恐龍無處不有》教學(xué)實(shí)錄 2023-2024學(xué)年統(tǒng)編版語文八年級下冊
- 初中英語教研組工作計(jì)劃(15篇)
- 高速公路改擴(kuò)建中的保通設(shè)計(jì)分析
- 美人蕉銹病病情調(diào)查報(bào)告
- 手工鎢極氬弧焊焊接工藝指導(dǎo)書
- 分級護(hù)理細(xì)化標(biāo)準(zhǔn)[資料]
- 北師大七年級上數(shù)學(xué)易錯題(共8頁)
- 板式換熱器計(jì)算
- 最新大學(xué)毛概期末考試重點(diǎn)總結(jié)
- 事故隱患排查治理統(tǒng)計(jì)分析制度
- 供應(yīng)商供方履約評價表(參考模板)
- 雜物電梯維護(hù)保養(yǎng)施工方案(共37頁)
- 徒步行軍pt課件
評論
0/150
提交評論