版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省徐州市云龍區(qū)2024學年中考一模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>3.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4 C. D.(a2b)3=a5b34.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米5.若分式的值為零,則x的值是()A.1 B. C. D.26.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,
將剪下的扇形作為一個圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm7.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或148.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學方法是()A.待定系數(shù)法B.配方C.降次D.消元9.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四10.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°11.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°12.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在梯形中,,,點、分別是邊、的中點.設,,那么向量用向量表示是________.14.數(shù)據(jù)﹣2,0,﹣1,2,5的平均數(shù)是_____,中位數(shù)是_____.15.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現(xiàn)裂紋并開始消溶,形狀無一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.16.分解因式a3﹣6a2+9a=_________________.17.若關于的一元二次方程無實數(shù)根,則一次函數(shù)的圖象不經(jīng)過第_________象限.18.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:(+)÷,其中x=20.(6分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).21.(6分)京沈高速鐵路赤峰至喀左段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?22.(8分)某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.23.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)24.(10分)先化簡,再求值:,其中25.(10分)某初中學校舉行毛筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學的概率.26.(12分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.27.(12分)小丁每天從某報社以每份0.5元買進報紙200分,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.(1)求y與x之間的函數(shù)關系式(要求寫出自變量x的取值范圍);(2)如果每月以30天計算,小丁每天至少要買多少份報紙才能保證每月收入不低于2000元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.2、C【解題分析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.3、B【解題分析】
根據(jù)同底數(shù)冪的除法,合并同類項,積的乘方的運算法則進行逐一運算即可.【題目詳解】解:A、5ab﹣=4ab,此選項運算錯誤,B、a6÷a2=a4,此選項運算正確,C、,選項運算錯誤,D、(a2b)3=a6b3,此選項運算錯誤,故選B.【題目點撥】此題考查了同底數(shù)冪的除法,合并同類項,積的乘方,熟練掌握運算法則是解本題的關鍵.4、B【解題分析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.5、A【解題分析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.6、C【解題分析】
設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=R,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【題目詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【題目點撥】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.7、D【解題分析】
根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【題目詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【題目點撥】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉(zhuǎn)換,關于x軸對稱的點和拋物線的關系.8、C【解題分析】
根據(jù)一元二次方程的解的定義即可求出答案.【題目詳解】由題意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故選:C.【題目點撥】本題考查了一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義.9、B【解題分析】
根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進行判斷直線y=kx-k不經(jīng)過的象限.【題目詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【題目點撥】考查了待定系數(shù)法求反比例函數(shù)的解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).10、C【解題分析】
先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【題目詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【題目點撥】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關鍵.11、C【解題分析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).12、C【解題分析】
根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【題目詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【題目點撥】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵,本題還考查了梯形的中位線等于上底與下底和的一半.14、0.80【解題分析】
根據(jù)中位數(shù)的定義和平均數(shù)的求法計算即可,中位數(shù)是將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).【題目詳解】平均數(shù)=(?2+0?1+2+5)÷5=0.8;把這組數(shù)據(jù)按從大到小的順序排列是:5,2,0,-1,-2,故這組數(shù)據(jù)的中位數(shù)是:0.故答案為0.8;0.【題目點撥】本題考查了平均數(shù)與中位數(shù)的定義,解題的關鍵是熟練的掌握平均數(shù)與中位數(shù)的定義.15、360°.【解題分析】
根據(jù)多邊形的外角和等于360°解答即可.【題目詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【題目點撥】本題考查的是多邊形的內(nèi)角和外角,掌握多邊形的外角和等于360°是解題的關鍵.16、a(a﹣3)1.【解題分析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案為a(a﹣3)1.17、一【解題分析】
根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【題目詳解】∵關于x的一元二次方程mx2-2x-1=0無實數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故答案為一.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了一次函數(shù)的性質(zhì).18、3【解題分析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、-【解題分析】
先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【題目詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【題目點撥】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.20、∠DAC=20°.【解題分析】
根據(jù)角平分線的定義可得∠ABC=2∠ABE,再根據(jù)直角三角形兩銳角互余求出∠BAD,然后根據(jù)∠DAC=∠BAC﹣∠BAD計算即可得解.【題目詳解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC邊上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【題目點撥】本題考查了三角形的內(nèi)角和定理,角平分線的定義,準確識圖理清圖中各角度之間的關系是解題的關鍵.21、(1)乙隊單獨施工需要1天完成;(2)乙隊至少施工l8天才能完成該項工程.【解題分析】
(1)先求得甲隊單獨施工完成該項工程所需時間,設乙隊單獨施工需要x天完成該項工程,再根據(jù)“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)設乙隊施工y天完成該項工程,根據(jù)題意列不等式解不等式即可.【題目詳解】(1)由題意知,甲隊單獨施工完成該項工程所需時間為1÷=90(天).設乙隊單獨施工需要x天完成該項工程,則,去分母,得x+1=2x.解得x=1.經(jīng)檢驗x=1是原方程的解.答:乙隊單獨施工需要1天完成.(2)設乙隊施工y天完成該項工程,則1-解得y≥2.答:乙隊至少施工l8天才能完成該項工程.22、112.1【解題分析】試題分析:(1)根據(jù)題意即可求得y與x的函數(shù)關系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數(shù)關系式,根據(jù)二次函數(shù)的最值問題,即可求得這個苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當x=7.1時,S最大值=112.1,即當矩形苗圃園垂直于墻的一邊的長為7.1米時,這個苗圃園的面積最大,這個最大值為112.1.點睛:此題考查了二次函數(shù)的實際應用問題.解題的關鍵是根據(jù)題意構建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.23、(1)i)證明見試題解析;ii);(2);(3).【解題分析】
(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【題目詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【題目點撥】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).24、;.【解題分析】
先對小括號部分通分,同時把除化為乘,再根據(jù)分式的基本性質(zhì)約分,最后代入求值.【題目詳解】解:原式==把代入得:原式=.【題目點撥】本題考查分式的化簡求值,計算題是中考必考題,一般難度不大,要特別慎重,盡量不在計算上失分.25、(1)答案見解析;(2).【解題分析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【題目詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學用M表示,八年級獲一等獎的同學用N表示,九年級獲一等獎的同學用P1、P2表示,樹狀圖如下:共有12種等可能結果,其中獲得一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國石油大學(北京)《網(wǎng)絡及信息安全技術》2023-2024學年第一學期期末試卷
- 長春光華學院《數(shù)據(jù)倉庫理論與實踐實驗》2023-2024學年第一學期期末試卷
- 食品加工機械衛(wèi)生級潤滑產(chǎn)品
- 餐飲業(yè)前瞻與策略模板
- 財務團隊商務禮儀模板
- 專業(yè)基礎知識(給排水)-(給水排水)《專業(yè)基礎知識》模擬試卷1
- 生物地理學探究模板
- 商務禮儀講解模板
- 青少年健身指南模板
- 誠信考試-國旗下講話發(fā)言稿
- 2024年公務員考試必背常識大全
- JTG∕T E61-2014 公路路面技術狀況自動化檢測規(guī)程
- 勞工與人權管理核心制度
- 北師大版數(shù)學五年級上冊第三單元《倍數(shù)與因數(shù)》大單元整體教學設計
- 中藥灌腸方法
- 醫(yī)美整形美容醫(yī)院眼部抗衰品牌課件
- 軟件研發(fā)安全管理制度
- 大學暑假假期社會實踐心得體會3篇
- 科普產(chǎn)業(yè)發(fā)展現(xiàn)狀調(diào)查報告
- 2024湖南湘電集團有限公司招聘筆試參考題庫附帶答案詳解
- 新課標人教版小學四年級體育與健康下冊全冊教案設計及教學反思
評論
0/150
提交評論