版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省新昌縣聯(lián)考2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.不等式組的解集在數(shù)軸上表示為()A. B. C. D.2.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a33.如果一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,那么實數(shù)m的取值為()A.m> B.m C.m= D.m=4.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間5.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,1),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<1;③當(dāng)x<1時,y隨x增大而增大;④拋物線的頂點坐標(biāo)為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤6.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π7.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm8.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.9.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米10.“保護(hù)水資源,節(jié)約用水”應(yīng)成為每個公民的自覺行為.下表是某個小區(qū)隨機(jī)抽查到的10戶家庭的月用水情況,則下列關(guān)于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.12.如圖,有一直徑是的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,用該扇形鐵皮圍成一個圓錐,所得圓錐的底面圓的半徑為米.13.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.14.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.15.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形16.若a+b=5,ab=3,則a2+b2=_____.17.若關(guān)于x的方程x2+x﹣a+=0有兩個不相等的實數(shù)根,則滿足條件的最小整數(shù)a的值是()A.﹣1 B.0 C.1 D.2三、解答題(共7小題,滿分69分)18.(10分)解不等式組:3x+3≥2x+72x+419.(5分)某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關(guān)系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關(guān)系式;當(dāng)產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當(dāng)產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關(guān)系式;當(dāng)廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本20.(8分)如圖,半圓O的直徑AB=5cm,點M在AB上且AM=1cm,點P是半圓O上的動點,過點B作BQ⊥PM交PM(或PM的延長線)于點Q.設(shè)PM=xcm,BQ=y(tǒng)cm.(當(dāng)點P與點A或點B重合時,y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過程,請補(bǔ)充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm11.522.533.54y/cm03.7______3.83.32.5______(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm.21.(10分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.(1)求證:B是EC的中點;(2)分別延長CD、EA相交于點F,若AC2=DC?EC,求證:AD:AF=AC:FC.22.(10分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.23.(12分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.24.(14分)某商場將每件進(jìn)價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?(2)設(shè)后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價多少元?②求出y與x之間的函數(shù)關(guān)系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當(dāng)x取何值時,商場獲利潤不少于2160元.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【題目詳解】∵x≥﹣2,故以﹣2為實心端點向右畫,x<1,故以1為空心端點向左畫.故選A.【題目點撥】本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實心圓點表示;“<”、“>”要用空心圓點表示.2、D【解題分析】
根據(jù)平方根的運算法則和冪的運算法則進(jìn)行計算,選出正確答案.【題目詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【題目點撥】本題考查學(xué)生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關(guān)鍵.3、C【解題分析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.4、B【解題分析】
根據(jù),可得答案.【題目詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【題目點撥】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.5、B【解題分析】
由拋物線的對稱軸結(jié)合拋物線與x軸的一個交點坐標(biāo),可求出另一交點坐標(biāo),結(jié)論①正確;當(dāng)x=﹣1時,y>1,得到a﹣b+c>1,結(jié)論②錯誤;根據(jù)拋物線的對稱性得到結(jié)論③錯誤;將x=2代入二次函數(shù)解析式中結(jié)合4a+b+c=1,即可求出拋物線的頂點坐標(biāo),結(jié)論④正確;根據(jù)拋物線的頂點坐標(biāo)為(2,b),判斷⑤.【題目詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,1),∴拋物線與x軸的另一交點坐標(biāo)為(1,1),∴拋物線過原點,結(jié)論①正確;②∵當(dāng)x=﹣1時,y>1,∴a﹣b+c>1,結(jié)論②錯誤;③當(dāng)x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當(dāng)x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點坐標(biāo)為(2,b),結(jié)論④正確;⑤∵拋物線的頂點坐標(biāo)為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結(jié)論有:①④⑤.故選B.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.6、B【解題分析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.7、B【解題分析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.8、B【解題分析】
如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進(jìn)而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【題目詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【題目點撥】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).9、C【解題分析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【題目詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【題目點撥】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.10、C【解題分析】
根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對選項一一分析,即可選擇正確答案.【題目詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項錯誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【題目點撥】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.二、填空題(共7小題,每小題3分,滿分21分)11、40°【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得出AB=AD、∠BAD=100°,再根據(jù)等腰三角形的性質(zhì)可求出∠B的度數(shù),此題得解.【題目詳解】根據(jù)旋轉(zhuǎn)的性質(zhì),可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì)以及等腰三角形的性質(zhì),根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠B的度數(shù)是解題的關(guān)鍵.12、【解題分析】
先利用△ABC為等腰直角三角形得到AB=1,再設(shè)圓錐的底面圓的半徑為r,則根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2πr=,然后解方程即可.【題目詳解】∵⊙O的直徑BC=,
∴AB=BC=1,
設(shè)圓錐的底面圓的半徑為r,
則2πr=,解得r=,
即圓錐的底面圓的半徑為米故答案為.13、【解題分析】
將點的坐標(biāo)代入,可以得到-1=,然后解方程,便可以得到k的值.【題目詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【題目點撥】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結(jié)合代入法進(jìn)行解答14、【解題分析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.15、B【解題分析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【題目詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【題目點撥】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.16、1【解題分析】試題分析:首先把等式a+b=5的等號兩邊分別平方,即得a2+2ab+b2=25,然后根據(jù)題意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案為1.考點:完全平方公式.17、D【解題分析】
根據(jù)根的判別式得到關(guān)于a的方程,求解后可得到答案.【題目詳解】關(guān)于x的方程有兩個不相等的實數(shù)根,則解得:滿足條件的最小整數(shù)的值為2.故選D.【題目點撥】本題考查了一元二次方程根與系數(shù)的關(guān)系,理解并能運用根的判別式得出方程是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、無解.【解題分析】試題分析:首先解每個不等式,兩個不等式的解集的公共部分就是不等式的解集.試題解析:由①得x≥4,由②得x<1,∴原不等式組無解,考點:解一元一次不等式;在數(shù)軸上表示不等式的解集.19、(1);(2);(3);當(dāng)時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【解題分析】
(1)直接利用待定系數(shù)法求出一次函數(shù)解析式進(jìn)而得出答案;(2)由題意可得:p≤q,進(jìn)而得出x的取值范圍;(3)①利用頂點式求出函數(shù)最值得出答案;②利用二次函數(shù)的增減性得出答案即可.【題目詳解】(1)設(shè)q=kx+b(k,b為常數(shù)且k≠0),當(dāng)x=2時,q=12,當(dāng)x=4時,q=10,代入解析式得:,解得:,∴q與x的函數(shù)關(guān)系式為:q=﹣x+14;(2)當(dāng)產(chǎn)量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當(dāng)產(chǎn)量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當(dāng)x時,y隨x的增加而增加.又∵產(chǎn)量大于市場需求量時,有4<x≤10,∴當(dāng)4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【題目點撥】本題考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)最值求法等知識,正確得出二次函數(shù)解析式是解題的關(guān)鍵.20、(1)4,1;(2)見解析;(3)1.1或3.2【解題分析】
(1)當(dāng)x=2時,PM⊥AB,此時Q與M重合,BQ=BM=4,當(dāng)x=4時,點P與B重合,此時BQ=1.(2)利用描點法畫出函數(shù)圖象即可;(3)根據(jù)直角三角形31度角的性質(zhì),求出y=2,觀察圖象寫出對應(yīng)的x的值即可;【題目詳解】(1)當(dāng)x=2時,PM⊥AB,此時Q與M重合,BQ=BM=4,當(dāng)x=4時,點P與B重合,此時BQ=1.故答案為4,1.(2)函數(shù)圖象如圖所示:(3)如圖,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ=31°,∴BQ=BM=2,觀察圖象可知y=2時,對應(yīng)的x的值為1.1或3.2.故答案為1.1或3.2.【題目點撥】本題考查圓的綜合題,垂徑定理,直角三角形的性質(zhì),解題的關(guān)鍵是靈活運用所解題的關(guān)鍵是理解題意,學(xué)會用測量法、圖象法解決實際問題.21、(1)詳見解析;(2)詳見解析.【解題分析】
(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠BCA=∠BAC,進(jìn)而可得出BA=BC,根據(jù)等角的余角相等結(jié)合等角對等邊,即可得出AB=BE,進(jìn)而可得出BE=BA=BC,此題得證;(2)根據(jù)AC2=DC?EC結(jié)合∠ACD=∠ECA可得出△ACD∽△ECA,根據(jù)相似三角形的性質(zhì)可得出∠ADC=∠EAC=90°,進(jìn)而可得出∠FDA=∠FAC=90°,結(jié)合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質(zhì)可證出AD:AF=AC:FC.【題目詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點;(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【題目點撥】本題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.22、(1)證明見解析(2)當(dāng)四邊形BEDF是菱形時,四邊形AGBD是矩形;證明見解析;【解題分析】
(1)在證明全等時常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【題目詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點、分別是、的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級數(shù)學(xué)(上)計算題專項練習(xí)匯編
- 年產(chǎn)50臺大型氣體壓縮機(jī)項目可行性研究報告模板-立項備案
- 企業(yè)中的項目組織管理第07章
- 2025版空調(diào)設(shè)備銷售與安裝一體化服務(wù)合同范本3篇
- 中小學(xué)生數(shù)學(xué)寒假培訓(xùn)班
- 國外城市社區(qū)居家養(yǎng)老服務(wù)的特點
- 重慶市南川區(qū)2024-2025學(xué)年八年級上學(xué)期期末考試生物試題(含答案)
- 四川省瀘州市瀘州高級中學(xué)校2024-2025學(xué)年九年級上學(xué)期1月期末考試化學(xué)試卷(含答案)
- 冬季用電防火安全
- 河北省唐山市(2024年-2025年小學(xué)六年級語文)部編版專題練習(xí)(上學(xué)期)試卷及答案
- 機(jī)動車維修竣工出廠合格證
- 陜西延長石油精原煤化工有限公司 60 萬噸 - 年蘭炭綜合利用項目 ( 一期 30 萬噸 - 年蘭炭、1 萬噸 - 年金屬鎂生產(chǎn)線)竣工環(huán)境保護(hù)驗收調(diào)查報告
- 大病救助申請書
- 法學(xué)概論-課件
- 廈門物業(yè)管理若干規(guī)定
- 外科護(hù)理學(xué)試題+答案
- 齊魯醫(yī)學(xué)屈光和屈光不正匯編
- 貨架的技術(shù)說明(一)
- 【高等數(shù)學(xué)練習(xí)題】皖西學(xué)院專升本自考真題匯總(附答案解析)
- 高處作業(yè)安全技術(shù)交底-
- 工抵房協(xié)議模板
評論
0/150
提交評論