版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市三十一中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.482.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.3.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°4.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.5.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構(gòu)成完全平方式的概率是()A.1B.12C.136.若分式的值為零,則x的值是()A.1 B. C. D.27.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°8.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.9.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.10.4的平方根是()A.4 B.±4 C.±2 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.12.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是_____.13.方程的解是__________.14.比較大小:4(填入“>”或“<”號)15.若一條直線經(jīng)過點(1,1),則這條直線的解析式可以是(寫出一個即可)______.16.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________.三、解答題(共8題,共72分)17.(8分)如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.18.(8分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).19.(8分)地下停車場的設(shè)計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設(shè)計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J為CD的長就是所限制的高度,而小亮認為應(yīng)該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)20.(8分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.21.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.22.(10分)已知關(guān)于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.23.(12分)解不等式,并把解集在數(shù)軸上表示出來.24.計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【題目點撥】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應(yīng)點之間的距離就是平移的距離.2、D【解題分析】
根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【題目詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【題目點撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.3、C【解題分析】
根據(jù)扇形的面積公式列方程即可得到結(jié)論.【題目詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【題目點撥】本題考了扇形面積的計算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.4、B【解題分析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.5、B【解題分析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構(gòu)成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.6、A【解題分析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.7、D【解題分析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.8、D【解題分析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關(guān)鍵.9、D【解題分析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.10、C【解題分析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【題目點撥】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.57×1【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、25°.【解題分析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.13、.【解題分析】
根據(jù)解分式方程的步驟依次計算可得.【題目詳解】解:去分母,得:,解得:,當時,,所以是原分式方程的解,故答案為:.【題目點撥】本題主要考查解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.14、>【解題分析】
試題解析:∵<∴4<.考點:實數(shù)的大小比較.【題目詳解】請在此輸入詳解!15、y=x.(答案不唯一)【解題分析】
首先設(shè)一次函數(shù)解析式為:y=kx+b(k≠0),b取任意值后,把(1,1)代入所設(shè)的解析式里,即可得到k的值,進而得到答案.【題目詳解】解:設(shè)直線的解析式y(tǒng)=kx+b,令b=0,將(1,1)代入,得k=1,此時解析式為:y=x.由于b可為任意值,故答案不唯一.故答案為:y=x.(答案不唯一)【題目點撥】本題考查了待定系數(shù)法求一次函數(shù)解析式.16、(-5,)【解題分析】分析:依據(jù)點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據(jù)點B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數(shù)y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數(shù)的綜合題的知識,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及平移的性質(zhì).在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度.三、解答題(共8題,共72分)17、(1)k=10,b=3;(2).【解題分析】試題分析:(1)、將A點坐標代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點B的坐標,然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數(shù)與反比例函數(shù)的綜合問題.18、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解題分析】試題分析:(1)將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應(yīng)比值求出點坐標.試題解析:(1)把點A(3,1),點C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,解得∴二次函數(shù)解析式為y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴點M的坐標為(1,5);(2)設(shè)直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,解得:∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點E坐標為(1,3),點F坐標為(1,1)∴1<5﹣m<3,解得2<m<4;(3)連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標為(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,則點N坐標為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應(yīng)點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點P在y軸右側(cè),作PH⊥y軸,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側(cè),則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3÷=3,若點P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;若點P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合題意得點P坐標有4個,分別為P1(),P2(),P3(3,1),P4(﹣3,7).考點:二次函數(shù)綜合題19、小亮說的對,CE為2.6m.【解題分析】
先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【題目詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【題目點撥】本題主要考查了解直角三角形的應(yīng)用,主要是正弦、正切概念及運算,解決本題的關(guān)鍵把實際問題轉(zhuǎn)化為數(shù)學問題.20、(1)45;(m,﹣m);(2)相似;(3)①;②.【解題分析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關(guān)系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關(guān)系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設(shè)拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數(shù)綜合題;2.壓軸題;3.探究型;4.最值問題.21、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解題分析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標;(3)A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設(shè)R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級數(shù)學(上)計算題專項練習匯編
- 年產(chǎn)50臺大型氣體壓縮機項目可行性研究報告模板-立項備案
- 企業(yè)中的項目組織管理第07章
- 2025版空調(diào)設(shè)備銷售與安裝一體化服務(wù)合同范本3篇
- 中小學生數(shù)學寒假培訓班
- 國外城市社區(qū)居家養(yǎng)老服務(wù)的特點
- 重慶市南川區(qū)2024-2025學年八年級上學期期末考試生物試題(含答案)
- 四川省瀘州市瀘州高級中學校2024-2025學年九年級上學期1月期末考試化學試卷(含答案)
- 冬季用電防火安全
- 河北省唐山市(2024年-2025年小學六年級語文)部編版專題練習(上學期)試卷及答案
- 申根簽證申請表模板
- 陜西延長石油精原煤化工有限公司 60 萬噸 - 年蘭炭綜合利用項目 ( 一期 30 萬噸 - 年蘭炭、1 萬噸 - 年金屬鎂生產(chǎn)線)竣工環(huán)境保護驗收調(diào)查報告
- 大病救助申請書
- 法學概論-課件
- 廈門物業(yè)管理若干規(guī)定
- 外科護理學試題+答案
- 齊魯醫(yī)學屈光和屈光不正匯編
- 貨架的技術(shù)說明(一)
- 【高等數(shù)學練習題】皖西學院專升本自考真題匯總(附答案解析)
- 高處作業(yè)安全技術(shù)交底-
- 工抵房協(xié)議模板
評論
0/150
提交評論