版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省南平市光澤縣達標名校2024年中考數(shù)學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若代數(shù)式在實數(shù)范圍內有意義,則x的取值范圍是()A. B. C. D.2.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°3.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α4.2018年1月份,菏澤市市區(qū)一周空氣質量報告中某項污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,455.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結論有().A.1個 B.2個 C.3個 D.4個6.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數(shù)的概率是()A. B. C. D.7.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數(shù)量x(單位:本)之間的函數(shù)關系如圖所示,則下列結論錯誤的是()A.一次性購買數(shù)量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元8.已知,則的值為A. B. C. D.9.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標系內的圖象大致為()A. B. C. D.10.許昌市2017年國內生產總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學記數(shù)法表示1915.5億應為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×1012二、填空題(共7小題,每小題3分,滿分21分)11.如圖是一個幾何體的三視圖,若這個幾何體的體積是36,則它的表面積是_______.12.若關于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.13.已知關于x的一元二次方程(k﹣5)x2﹣2x+2=0有實根,則k的取值范圍為_____.14.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm15.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.16.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結BD,若∠A=32°,則∠CDB的大小為_____度.17.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數(shù)據(jù)如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8531865279316044005發(fā)芽頻率0.8500.7950.8150.7930.8020.801根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率為___________(精確到0.1).三、解答題(共7小題,滿分69分)18.(10分)列方程解應用題:某市今年進行水網(wǎng)升級,1月1日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年5月的水費則是30元.已知小麗家今年5月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.19.(5分)如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數(shù)量關系是,位置關系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚€等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.20.(8分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).21.(10分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設運動時間為ts,解答下列問題:(發(fā)現(xiàn))(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.22.(10分)綜合與實踐﹣﹣﹣折疊中的數(shù)學在學習完特殊的平行四邊形之后,某學習小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結論;操作與畫圖:(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應的字母);操作與探究:(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.23.(12分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.24.(14分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】試題解析:要使分式有意義,則1-x≠0,解得:x≠1.故選D.2、B【解題分析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【題目點撥】本題考查平行線的性質,掌握兩直線平行,同位角相等是解題關鍵.3、C【解題分析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內角與外角2.三角形內角和定理.4、C【解題分析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【題目詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【題目點撥】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).5、C【解題分析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【題目詳解】解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y=9a+3b+c=0,故④錯誤;觀察圖象得當x=-2時,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結論有①②⑤,故選:C【題目點撥】主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的表達式求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.6、D【解題分析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.7、D【解題分析】
A、根據(jù)單價=總價÷數(shù)量,即可求出一次性購買數(shù)量不超過10本時,銷售單價,A選項正確;C、根據(jù)單價=總價÷數(shù)量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據(jù)總價=200+超過10本的那部分書的數(shù)量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【題目詳解】解:A、∵200÷10=20(元/本),∴一次性購買數(shù)量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【題目點撥】考查了一次函數(shù)的應用,根據(jù)一次函數(shù)圖象結合數(shù)量關系逐一分析四個選項的正誤是解題的關鍵.8、C【解題分析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.9、D【解題分析】
根據(jù)二次函數(shù)圖象開口向上得到a>0,再根據(jù)對稱軸確定出b,根據(jù)二次函數(shù)圖形與軸的交點個數(shù),判斷的符號,根據(jù)圖象發(fā)現(xiàn)當x=1時y=a+b+c<0,然后確定出一次函數(shù)圖象與反比例函數(shù)圖象的情況,即可得解.【題目詳解】∵二次函數(shù)圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數(shù)圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經(jīng)過第二四象限,且與y軸的正半軸相交,反比例函數(shù)圖象在第二、四象限,只有D選項圖象符合.故選:D.【題目點撥】考查反比例函數(shù)的圖象,一次函數(shù)的圖象,二次函數(shù)的圖象,掌握函數(shù)圖象與系數(shù)的關系是解題的關鍵.10、C【解題分析】
科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【題目詳解】用科學記數(shù)法表示1915.5億應為1.9155×1011,故選C.【題目點撥】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解題分析】分析:∵由主視圖得出長方體的長是6,寬是2,這個幾何體的體積是16,∴設高為h,則6×2×h=16,解得:h=1.∴它的表面積是:2×1×2+2×6×2+1×6×2=2.12、k≥-1【解題分析】
首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【題目詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數(shù)根,則的取值范圍是.故答案為【題目點撥】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.13、【解題分析】
若一元二次方程有實根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關于k的不等式組,求出k的取值范圍.【題目詳解】解:∵方程有兩個實數(shù)根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【題目點撥】此題考查根的判別式問題,總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.14、【解題分析】
根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【題目詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【題目點撥】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據(jù)三角形的面積公式求出腰與底的比是解題的關15、【解題分析】
先利用等腰直角三角形的性質求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結論.【題目詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【題目點撥】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.16、1【解題分析】
根據(jù)等腰三角形的性質以及三角形內角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質以及三角形外角的性質在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【題目詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【題目點撥】本題主要考查等腰三角形的性質,三角形外角的性質,掌握等邊對等角是解題的關鍵,注意三角形內角和定理的應用.17、1.2【解題分析】
仔細觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,從而得到結論.【題目詳解】∵觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,∴該玉米種子發(fā)芽的概率為1.2,故答案為1.2.【題目點撥】考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、2.4元/米【解題分析】
利用總水費÷單價=用水量,結合小麗家今年5月的用水量比去年12月的用水量多5m3,進而得出等式即可.【題目詳解】解:設去年用水的價格每立方米元,則今年用水價格為每立方米元由題意列方程得:解得經(jīng)檢驗,是原方程的解(元/立方米)答:今年居民用水的價格為每立方米元.【題目點撥】此題主要考查了分式方程的應用,正確表示出用水量是解題關鍵.19、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結論仍然成立【解題分析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結論都能成立.考點:正方形,等邊三角形,三角形全等20、CD的長度為17﹣17cm.【解題分析】
在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【題目詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【題目點撥】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.21、【發(fā)現(xiàn)】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標為;或或;【拓展】t的取值范圍是或,理由見解析.【解題分析】
發(fā)現(xiàn):(3)先確定出扇形半徑,進而用弧長公式即可得出結論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結論;探究:分圓和直線AB和直線OB相切,利用三角函數(shù)即可得出結論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結論.【題目詳解】[發(fā)現(xiàn)](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設⊙P半徑為r,則有r=2﹣3=3,當t=2時,如圖3,點N與點A重合,∴PA=r=3,設MP與AB相交于點Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當⊙P與直線AB相切于點C時,連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點P的坐標為(3,0);②如圖3,當⊙P與直線OB相切于點D時,連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點P的坐標為(,0);③如圖2,當⊙P與直線OB相切于點E時,連接PE,則有PE⊥OB,同②可得:OP;∴點P的坐標為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當點N運動到與點A重合時,與Rt△ABO的邊有一個公共點,此時t=2;當t>2,直到⊙P運動到與AB相切時,由探究①得:OP=3,∴t3,與Rt△ABO的邊有兩個公共點,∴2<t≤3.如圖6,當⊙P運動到PM與OB重合時,與Rt△ABO的邊有兩個公共點,此時t=2;直到⊙P運動到點N與點O重合時,與Rt△ABO的邊有一個公共點,此時t=4;∴2≤t<4,即:t的取值范圍是2<t≤3,2≤t<4.【題目點撥】本題是圓的綜合題,主要考查了弧長公式,切線的性質,銳角三角函數(shù),三角形面積公式,作出圖形是解答本題的關鍵.22、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解題分析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質,即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【題目詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【題目點撥】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質、弧長計算公式,等腰三角形的判定與性質以及全等三角形的判定與性質的綜合應用,熟練掌握等腰三角形的判定定理和性質定理是解本題的關鍵.23、(1);(2)見解析;(3)【解題分析】
(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長.【題目詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度消防應急水車租賃與應急響應協(xié)議3篇
- 家教行業(yè)的新模式線上線下融合策略
- 教育領域創(chuàng)新型產品的開發(fā)與推廣
- 小學教育中的拼音與識字一體化教學策略
- 小學家校合作中家長的教育職責與能力建設
- 教育心理學在學術報告中的應用
- 數(shù)字化技術在宴會廳空間布局中的應用
- 以客戶為中心的學生宿舍管理與服務提升方案
- 提升學校餐飲服務水平的關鍵-食品安全信息公示
- 2025年投標合作協(xié)議書6篇
- 《國有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護管理方案
- 人教版【初中數(shù)學】知識點總結-全面+九年級上冊數(shù)學全冊教案
- 食品安全分享
- 礦山機械設備安全管理制度
- 計算機等級考試二級WPS Office高級應用與設計試題及答案指導(2025年)
- 造價框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 心衰患者的個案護理
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀課件
- 小學六年級數(shù)學100道題解分數(shù)方程
評論
0/150
提交評論