版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河北省定興縣聯(lián)考中考數(shù)學(xué)模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則這個幾何體的主視圖是()A. B. C. D.2.為了解某班學(xué)生每周做家務(wù)勞動的時間,某綜合實(shí)踐活動小組對該班9名學(xué)生進(jìn)行了調(diào)查,有關(guān)數(shù)據(jù)如下表.則這9名學(xué)生每周做家務(wù)勞動的時間的眾數(shù)及中位數(shù)分別是()每周做家務(wù)的時間(小時)01234人數(shù)(人)22311A.3,2.5 B.1,2 C.3,3 D.2,23.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對稱軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.4.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a25.如圖,點(diǎn)A為∠α邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示cosα的值,錯誤的是(
)A. B. C. D.6.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點(diǎn)測得,在C點(diǎn)測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.7.如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.28.某校在國學(xué)文化進(jìn)校園活動中,隨機(jī)統(tǒng)計50名學(xué)生一周的課外閱讀時間如表所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()學(xué)生數(shù)(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,99.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點(diǎn)D,連接BI,BD,DC下列說法中錯誤的一項(xiàng)是()A.線段DB繞點(diǎn)D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點(diǎn)D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點(diǎn)A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點(diǎn)I順時針旋轉(zhuǎn)一定能與線段IB重合10.﹣23的相反數(shù)是()A.﹣8 B.8 C.﹣6 D.611.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.12.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④二、填空題:(本大題共6個小題,每小題4分,共24分.)13.讓我們輕松一下,做一個數(shù)字游戲:第一步:取一個自然數(shù),計算得;第二步:算出的各位數(shù)字之和得,計算得;第三步:算出的各位數(shù)字之和得,再計算得;依此類推,則____________14.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.15.若4a+3b=1,則8a+6b-3的值為______.16.方程=1的解是_____.17.如圖,點(diǎn)M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設(shè)點(diǎn)O落在點(diǎn)P處,如果當(dāng)OM=4,ON=3時,點(diǎn)O、P的距離為4,那么折痕MN的長為______.18.小球在如圖所示的地板上自由地滾動,并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.20.(6分)如圖,已知點(diǎn)A(1,a)是反比例函數(shù)y1=的圖象上一點(diǎn),直線y2=﹣與反比例函數(shù)y1=的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點(diǎn)P的坐標(biāo).21.(6分)小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強(qiáng)至少需要幾米長的竹籬笆(不考慮接縫).小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過程,請補(bǔ)充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達(dá)式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點(diǎn)、畫函數(shù)圖象:如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當(dāng)x=________時,y有最小值.由此,小強(qiáng)確定籬笆長至少為________米.22.(8分)如圖,已知的直徑,是的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作,垂足為,與交于點(diǎn),設(shè),的度數(shù)分別是,,且.(1)用含的代數(shù)式表示;(2)連結(jié)交于點(diǎn),若,求的長.23.(8分)在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(0,4),BC平分∠ABO交x軸于點(diǎn)C(2,0).點(diǎn)P是線段AB上一個動點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)P作AB的垂線分別與x軸交于點(diǎn)D,與y軸交于點(diǎn)E,DF平分∠PDO交y軸于點(diǎn)F.設(shè)點(diǎn)D的橫坐標(biāo)為t.(1)如圖1,當(dāng)0<t<2時,求證:DF∥CB;(2)當(dāng)t<0時,在圖2中補(bǔ)全圖形,判斷直線DF與CB的位置關(guān)系,并證明你的結(jié)論;(3)若點(diǎn)M的坐標(biāo)為(4,-1),在點(diǎn)P運(yùn)動的過程中,當(dāng)△MCE的面積等于△BCO面積的倍時,直接寫出此時點(diǎn)E的坐標(biāo).24.(10分)先化簡,再求值:,其中x=﹣1.25.(10分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F,求∠F的度數(shù).26.(12分)如圖,已知點(diǎn)D、E為△ABC的邊BC上兩點(diǎn).AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).解:過點(diǎn)A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性質(zhì))即:BH=又∵(所作)∴AH為線段的垂直平分線∴AB=AC(線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等)∴(等邊對等角)27.(12分)在△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點(diǎn)A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解題分析】
由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據(jù)此可得.【題目詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【題目點(diǎn)撥】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.2、D【解題分析】試題解析:表中數(shù)據(jù)為從小到大排列.?dāng)?shù)據(jù)1小時出現(xiàn)了三次最多為眾數(shù);1處在第5位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選D.考點(diǎn):1.眾數(shù);1.中位數(shù).3、A【解題分析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線段最短求解.【題目詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【題目點(diǎn)撥】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.4、D【解題分析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項(xiàng)法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點(diǎn)評:本題考查了完全平方公式,合并同類項(xiàng)法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.5、D【解題分析】
根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【題目詳解】cosα=.故選D.【題目點(diǎn)撥】熟悉掌握銳角三角函數(shù)的定義是關(guān)鍵.6、B【解題分析】
解:過點(diǎn)B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.7、B【解題分析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因?yàn)橄褽F∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.8、C【解題分析】
解:觀察、分析表格中的數(shù)據(jù)可得:∵課外閱讀時間為1小時的人數(shù)最多為11人,∴眾數(shù)為1.∵將這組數(shù)據(jù)按照從小到大的順序排列,第25個和第26個數(shù)據(jù)的均為2,∴中位數(shù)為2.故選C.【題目點(diǎn)撥】本題考查(1)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);(2)中位數(shù)的確定要分兩種情況:①當(dāng)數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為奇數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的那個數(shù)就是中位數(shù);②當(dāng)數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為偶數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).9、D【解題分析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點(diǎn)睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.10、B【解題分析】∵=﹣8,﹣8的相反數(shù)是8,∴的相反數(shù)是8,故選B.11、A【解題分析】
對一個物體,在正面進(jìn)行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【題目詳解】解:由主視圖的定義可知A選項(xiàng)中的圖形為該立體圖形的主視圖,故選擇A.【題目點(diǎn)撥】本題考查了三視圖的概念.12、B【解題分析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【題目詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【題目點(diǎn)撥】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】
根據(jù)題意可以分別求得a1,a2,a3,a4,從而可以發(fā)現(xiàn)這組數(shù)據(jù)的特點(diǎn),三個一循環(huán),從而可以求得a2019的值.【題目詳解】解:由題意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案為:1.【題目點(diǎn)撥】本題考查數(shù)字變化類規(guī)律探索,解題的關(guān)鍵是明確題意,求出前幾個數(shù),觀察數(shù)的變化特點(diǎn),求出a2019的值.14、2﹣π.【解題分析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.15、-1【解題分析】
先求出8a+6b的值,然后整體代入進(jìn)行計算即可得解.【題目詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【題目點(diǎn)撥】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.16、x=3【解題分析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解,故答案為3.【題目點(diǎn)撥】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結(jié)果須代入最簡公分母進(jìn)行檢驗(yàn),結(jié)果為零,則原方程無解;結(jié)果不為零,則為原方程的解.17、【解題分析】
由折疊的性質(zhì)可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【題目詳解】設(shè)MN與OP交于點(diǎn)E,
∵點(diǎn)O、P的距離為4,
∴OP=4
∵折疊
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【題目點(diǎn)撥】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關(guān)鍵.18、2【解題分析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:418三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)7.5【解題分析】
(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;(2)首先證明AC=2DE=10,在Rt△ADC中,求得DC=6,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解決問題.【題目詳解】(1)證明:連接OD,∵DE是切線,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)連接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直徑,∠ACB=90°,∴EC是⊙O的切線,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【題目點(diǎn)撥】此題主要考查圓的切線問題,解題的關(guān)鍵是熟知切線的性質(zhì).20、(1)反比例函數(shù)的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解題分析】試題分析:(1)把點(diǎn)B(3,﹣1)帶入反比例函數(shù)中,即可求得k的值;(2)聯(lián)立直線和反比例函數(shù)的解析式構(gòu)成方程組,化簡為一個一元二次方程,解方程即可得到點(diǎn)D坐標(biāo),觀察圖象可得相應(yīng)x的取值范圍;(3)把A(1,a)是反比例函數(shù)的解析式,求得a的值,可得點(diǎn)A坐標(biāo),用待定系數(shù)法求得直線AB的解析式,令y=0,解得x的值,即可求得點(diǎn)P的坐標(biāo).試題解析:(1)∵B(3,﹣1)在反比例函數(shù)的圖象上,∴-1=,∴m=-3,∴反比例函數(shù)的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當(dāng)x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數(shù)的圖象上一點(diǎn),∴a=-3,∴A(1,-3),設(shè)直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)21、見解析【解題分析】
根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x,由x═()2+4可得當(dāng)x=2,y有最小值,則可求籬笆長.【題目詳解】根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴當(dāng)x=2時,y有最小值為1,由此小強(qiáng)確定籬笆長至少為1米.故答案為:y=2x,2,1.【題目點(diǎn)撥】本題考查了反比例函數(shù)的應(yīng)用,完全平方公式的運(yùn)用,關(guān)鍵是熟練運(yùn)用完全平方公式.22、(1);(2)【解題分析】
(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質(zhì)可得,則根據(jù)等腰三角形的性質(zhì)可得,利用,化簡計算即可得到答案;
(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質(zhì)可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計算即可.【題目詳解】解:(1)如圖示,連結(jié),∵是的切線,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如圖示,連結(jié),∵,,∴,∴,∴,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形,∴,∴是等邊三角形,∴,∴,∵,∴的長.【題目點(diǎn)撥】本題考查的是切線的性質(zhì)、菱形的判定和性質(zhì)、弧長的計算,掌握切線的性質(zhì)定理、弧長公式是解題的關(guān)鍵.23、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解題分析】
(1)求出∠PBO+∠PDO=180°,根據(jù)角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據(jù)平行線的性質(zhì)得出即可;
(2)求出∠ABO=∠PDA,根據(jù)角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據(jù)垂直定義得出即可;
(3)分為兩種情況:根據(jù)三角形面積公式求出即可.【題目詳解】(1)證明:如圖1.
∵在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(0,4),
∴∠AOB=90°.
∵DP⊥AB于點(diǎn)P,
∴∠DPB=90°,
∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直線DF與CB的位置關(guān)系是:DF⊥CB,
證明:延長DF交CB于點(diǎn)Q,如圖2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:過M作MN⊥y軸于N,
∵M(jìn)(4,-1),
∴MN=4,ON=1,
當(dāng)E在y軸的正半軸上時,如圖3,
∵△MCE的面積等于△BCO面積的倍時,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
當(dāng)E在y軸的負(fù)半軸上時,如圖4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐標(biāo)是(0,)或(0,-).【題目點(diǎn)撥】本題考查了平行線的性質(zhì)和判定,三角形內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),三角形的面積的應(yīng)用,題目綜合性比較強(qiáng),有一定的難度.24、-2.【解題分析】
根據(jù)分式的運(yùn)算法化解即可求出答案.【題目詳解】解:原式=,當(dāng)x=﹣1時,原式=.【題目點(diǎn)撥】熟練運(yùn)用分式的運(yùn)算法則.25、(1)﹣1+3;(2)30°.【解題分析】
(1)根據(jù)零指數(shù)冪、絕對值、二次根式的性質(zhì)求出每一部分的值,代入求出即可;(2)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=,根據(jù)三角形內(nèi)角和定理即可求解;【題目詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點(diǎn)D,E分別是邊BC,AC的中點(diǎn),∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【題目點(diǎn)撥】(1)主要考查零指數(shù)冪、絕對值、二次根式的性質(zhì);(2)考查平行線的性質(zhì)和三角形內(nèi)角和定理.26、見解析【解題分析】
根據(jù)等腰三角形的性質(zhì)與判定及線段垂直平分線的性質(zhì)解答即可.【題目詳解】過點(diǎn)A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底邊上的高也是底邊上的中線).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性質(zhì)),即:BH=CH.∵AH⊥BC(所作),∴AH為線段BC的垂直平分線.∴AB=AC(線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等).∴∠B=∠C(等邊對等角).【題目點(diǎn)撥】本題考查等腰三角形的性質(zhì)及線段垂直平分線的性質(zhì),等腰三角形的底邊中線、底邊上的高、頂角的角平分線三線合一;線段垂直平分線上的點(diǎn)到線段兩端的距離相等;27、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解題分析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【題目詳解】(1)①如圖1中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年車隊駕駛員勞動合同加班費(fèi)支付合同4篇
- 二零二四年度醫(yī)療機(jī)構(gòu)與公共衛(wèi)生機(jī)構(gòu)之間的傳染病防控合作協(xié)議3篇
- 2025年度瓷磚行業(yè)安全教育與培訓(xùn)服務(wù)合同4篇
- 骨痹飲調(diào)控EphrinB2介導(dǎo)的軟骨細(xì)胞自噬延緩創(chuàng)傷后關(guān)節(jié)炎
- 二零二五年度網(wǎng)絡(luò)安全項(xiàng)目投標(biāo)失敗風(fēng)險評估與合同完善合同3篇
- 二零二五年度荔枝電商法治講堂在線教育平臺合作協(xié)議3篇
- 二零二五年度錯時停車位租賃與智慧城市建設(shè)項(xiàng)目合同4篇
- 桁架安全施工方案
- 涵洞安全施工方案
- 二零二五年度知識產(chǎn)權(quán)侵權(quán)賠償協(xié)議8篇
- 工業(yè)自動化設(shè)備維護(hù)保養(yǎng)指南
- 《向心力》參考課件4
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 【地理】地圖的選擇和應(yīng)用(分層練) 2024-2025學(xué)年七年級地理上冊同步備課系列(人教版)
- (正式版)CB∕T 4552-2024 船舶行業(yè)企業(yè)安全生產(chǎn)文件編制和管理規(guī)定
- JBT 14588-2023 激光加工鏡頭 (正式版)
- 2024年四川省成都市樹德實(shí)驗(yàn)中學(xué)物理八年級下冊期末質(zhì)量檢測試題含解析
- 九型人格與領(lǐng)導(dǎo)力講義
- 廉潔應(yīng)征承諾書
- 2023年四川省成都市中考物理試卷真題(含答案)
- 泵車述職報告
評論
0/150
提交評論