版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市鵬程中學2024學年中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個2.2017年新設了雄安新區(qū),周邊經濟受到刺激綜合實力大幅躍升,其中某地區(qū)生產總值預計可增長到305.5億元其中305.5億用科學記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10113.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:24.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶35.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.6.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.7.下列事件是確定事件的是()A.陰天一定會下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機,任選一個頻道,屏幕上正在播放新聞聯(lián)播D.在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書8.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.109.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.10.已知關于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.若,,則的值為________.12.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.13.定義一種新運算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.14.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內分別填上適當?shù)臄?shù),使得將這個表面展開圖折成正方體后,相對面上的兩個數(shù)互為相反數(shù),則填在B內的數(shù)為______.15.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.16.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.17.如圖,在2×4的正方形網格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結果保留π)三、解答題(共7小題,滿分69分)18.(10分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農民組建農副產品銷售公司,某農副產品的年產量不超過100萬件,該產品的生產費用y(萬元)與年產量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產出的產品都能在當年銷售完,達到產銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?19.(5分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.20.(8分)如圖,某次中俄“海上聯(lián)合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據以上數(shù)據求出潛艇C離開海平面的下潛深度.(結果保留整數(shù).參考數(shù)據:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)21.(10分)先化簡,再求值:(﹣1)÷,其中x=1.22.(10分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.23.(12分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.24.(14分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設計出最省錢的購買方案,并說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
根據數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【題目詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【題目點撥】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關鍵.2、C【解題分析】解:305.5億=3.055×1.故選C.3、D【解題分析】
依據平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據平行線分線段成比例定理,即可得出AE與EC的比值.【題目詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【題目點撥】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.4、A【解題分析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質:相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數(shù))即可得出對應邊之比,進而得到面積比.5、D【解題分析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.6、A【解題分析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.7、D【解題分析】試題分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會下雨,是隨機事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機事件;C、打開電視機,任選一個頻道,屏幕上正在播放新聞聯(lián)播,是隨機事件;D、在學校操場上向上拋出的籃球一定會下落,是必然事件.故選D.考點:隨機事件.8、D【解題分析】
過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【題目詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【題目點撥】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.9、C【解題分析】
先分別表示出小進和小俊跑800米的時間,再根據小進比小俊少用了40秒列出方程即可.【題目詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【題目點撥】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.10、C【解題分析】
先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【題目詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【題目點撥】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-.【解題分析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.12、1.【解題分析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.13、-1【解題分析】
利用題中的新定義計算即可求出值.【題目詳解】解:根據題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【題目點撥】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵.14、1【解題分析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內的數(shù)為1.故答案為1.15、1【解題分析】試題分析:設該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關鍵是得到商品售價的等量關系.16、或【解題分析】
由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【題目詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【題目點撥】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.17、【解題分析】分析:連接AA′,根據勾股定理求出AC=AC′,及AA′的長,然后根據勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉變換下,對應線段相等.解決問題的關鍵是找出變換的規(guī)律,根據弧長公式求解.三、解答題(共7小題,滿分69分)18、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年產量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)今年最多可獲得毛利潤1080萬元【解題分析】
(1)利用待定系數(shù)法可求出y與x以及z與x之間的函數(shù)關系式;(1)根據(1)的表達式及毛利潤=銷售額﹣生產費用,可得出w與x的函數(shù)關系式,再利用配方法求出最值即可;(3)首先求出x的取值范圍,再利用二次函數(shù)增減性得出答案即可.【題目詳解】(1)圖①可得函數(shù)經過點(100,1000),設拋物線的解析式為y=ax1(a≠0),將點(100,1000)代入得:1000=10000a,解得:a=,故y與x之間的關系式為y=x1.圖②可得:函數(shù)經過點(0,30)、(100,10),設z=kx+b,則,解得:,故z與x之間的關系式為z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴當x=75時,W有最大值1115,∴年產量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)令y=360,得x1=360,解得:x=±60(負值舍去),由圖象可知,當0<y≤360時,0<x≤60,由W=﹣(x﹣75)1+1115的性質可知,當0<x≤60時,W隨x的增大而增大,故當x=60時,W有最大值1080,答:今年最多可獲得毛利潤1080萬元.【題目點撥】本題主要考查二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,注意二次函數(shù)最值的求法,一般用配方法.19、(1)證明見解析;(2)1.【解題分析】試題分析:(1)根據矩形的性質得到AB=CD,∠B=∠D=90°,根據折疊的性質得到∠E=∠B,AB=AE,根據全等三角形的判定定理即可得到結論;(2)根據全等三角形的性質得到AF=CF,EF=DF,根據勾股定理得到DF=3,根據三角形的面積公式即可得到結論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質,熟練掌握折疊的性質是解題的關鍵.20、潛艇C離開海平面的下潛深度約為308米【解題分析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數(shù)分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關系求解.視頻21、-1.【解題分析】
先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【題目詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【題目點撥】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則22、(1)①真;②真;③真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;見解析.【解題分析】
(1)根據命題的真假判斷即可;(2)根據全等三角形的判定和性質進行證明即可.【題目詳解】(1)①等腰三角形兩腰上的中線相等是真命題;②等腰三角形兩底角的角平分線相等是真命題;③有兩條角平分線相等的三角形是等腰三角形是真命題;故答案為真;真;真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;已知:如圖,△ABC中,BD,CE分別是AC,BC邊上的中線,且BD=CE,求證:△ABC是等腰三角形;證明:連接DE,過點D作DF∥EC,交BC的延長線于點F,∵BD,CE分別是AC,BC邊上的中線,∴DE是△ABC的中位線,∴DE∥BC,∵DF∥EC,∴四邊形DECF是平行四邊形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC與△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=AC,∴△ABC是等腰三角形.【題目點撥】本題考查了全等三角形的判定與性質及等腰三角形的性質;證明的步驟是:先根據題意畫出圖形,再根據圖形寫出已知和求證,最后寫出證明過程.23、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解題分析】
(1)應用待定系數(shù)法問題可解;(2)①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物流運輸公司股權轉讓書3篇
- 二零二五年度果樹病蟲害防治果園土地承包服務合同3篇
- 2025年度土地承包合同未滿征收補償與農村土地權益置換政策執(zhí)行協(xié)議2篇
- 二零二五年度智慧城市運營管理商業(yè)合同3篇
- 內河漁船出售轉讓合同(2025年度)附帶船舶運營許可及培訓3篇
- 二零二五年度2025年企業(yè)租賃工業(yè)廠房合同3篇
- 2025年度綠色生態(tài)養(yǎng)殖合伙協(xié)議合同書3篇
- 二零二五年度新能源項目經理勞務合同3篇
- 2025年度民事糾紛和解協(xié)議書與知識產權侵權賠償及和解協(xié)議3篇
- 2025年度人工智能領域出資技術合作框架協(xié)議
- 2024年關于單位消防安全的管理制度范本(三篇)
- 2024年高中生物學業(yè)水平合格考及答案
- 期末檢測(試題)-2024-2025學年三年級上冊數(shù)學人教版
- 低短路比場景下新能源場站構網跟網變流器容量配比估算-
- 康復醫(yī)學治療技術士考試歷年真題
- JGJ/T 241-2011人工砂混凝土應用技術規(guī)程
- 短視頻拍攝合作協(xié)議范本
- 2021-2022年云南省昆明市五華區(qū)人教版五年級上冊期末測試數(shù)學試卷
- 2024年《企業(yè)戰(zhàn)略管理》期末考試復習題庫(含答案)
- 部編人教版7-9年級語文目錄
- 人教版小學數(shù)學五年級上冊七單元《數(shù)學廣角-植樹問題》單元集體備課整體設計
評論
0/150
提交評論