2024屆遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2024屆遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2024屆遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2024屆遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2024屆遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年遼寧省紅旗校初中數(shù)學畢業(yè)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°2.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④3.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間4.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)25.-3的倒數(shù)是()A.3 B.13 C.-16.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根7.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1048.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.9.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件10.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC11.如圖,小明要測量河內小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.12.計算(ab2)3的結果是()A.ab5 B.ab6 C.a3b5 D.a3b6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據(jù)此規(guī)律,第10個圖形有_______個五角星.14.如圖,在四邊形中,,,,,,點從點出發(fā)以的速度向點運動,點從點出發(fā)以的速度向點運動,、兩點同時出發(fā),其中一點到達終點時另一點也停止運動.若,當__時,是等腰三角形.15.因式分解:2b2a2﹣a3b﹣ab3=_____.16.如圖所示,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.17.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.18.比較大?。?_________(填<,>或=).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.20.(6分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標.21.(6分)如圖,在中,是的中點,過點的直線交于點,交的平行線于點,交于點,連接、.求證:;請你判斷與的大小關系,并說明理由.22.(8分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.23.(8分)已知關于x的一元二次方程有實數(shù)根.(1)求k的取值范圍;(2)若k為正整數(shù),且方程有兩個非零的整數(shù)根,求k的取值.24.(10分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調一些同學去參加歌詠比賽.如果從甲班抽調的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調了多少參加歌詠比賽?25.(10分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.26.(12分)我校對全校學生進傳統(tǒng)文化禮儀知識測試,為了了解測試結果,隨機抽取部分學生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有人達標;(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?27.(12分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關于小芳出發(fā)時間t(單位:min)的函數(shù)圖象如圖,請結合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數(shù)解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【題目點撥】本題考查平行線的性質,掌握兩直線平行,同位角相等是解題關鍵.2、B【解題分析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,等高模型、三邊關系一一判斷即可.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【題目點撥】本題考查了相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質,解直角三角形,解題的關鍵是掌握它們的性質進行解題.3、B【解題分析】∵9<11<16,∴,∴故選B.4、C【解題分析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.5、C【解題分析】

由互為倒數(shù)的兩數(shù)之積為1,即可求解.【題目詳解】∵-3×-13=1,∴故選C6、D【解題分析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.7、C【解題分析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【題目詳解】260萬=2600000=.故選C.【題目點撥】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、A【解題分析】

由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【題目詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應該為1,2,3,故選A.【題目點撥】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.9、D【解題分析】是實數(shù),||一定大于等于0,是必然事件,故選D.10、D【解題分析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【題目點撥】本題考查作圖—復雜作圖;平行線的判定與性質;三角形的外角性質.11、B【解題分析】

解:過點B作BE⊥AD于E.設BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.12、D【解題分析】試題分析:根據(jù)積的乘方的性質進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解題分析】尋找規(guī)律:不難發(fā)現(xiàn),第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.14、或.【解題分析】

根據(jù)題意,用時間t表示出DQ和PC,然后根據(jù)等腰三角形腰的情況分類討論,①當時,畫出對應的圖形,可知點在的垂直平分線上,QE=,AE=BP,列出方程即可求出t;②當時,過點作于,根據(jù)勾股定理求出PQ,然后列出方程即可求出t.【題目詳解】解:由運動知,,,,,,,是等腰三角形,且,①當時,過點P作PE⊥AD于點E點在的垂直平分線上,QE=,AE=BP,,,②當時,如圖,過點作于,,,,,四邊形是矩形,,,,在中,,,,點在邊上,不和重合,,,此種情況符合題意,即或時,是等腰三角形.故答案為:或.【題目點撥】此題考查的是等腰三角形的定義和動點問題,掌握等腰三角形的定義和分類討論的數(shù)學思想是解決此題的關鍵.15、﹣ab(a﹣b)2【解題分析】

首先確定公因式為ab,然后提取公因式整理即可.【題目詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【題目點撥】本題考查了因式分解-提公因式法,解題的關鍵是掌握提公因式法的概念.16、5【解題分析】

本題先根據(jù)垂徑定理構造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【題目詳解】解:如圖,設圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點.連接OA.

∵尺的對邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【題目點撥】此題考查了切線的性質及垂徑定理,建立數(shù)學模型是關鍵.17、73°【解題分析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.18、<【解題分析】【分析】根據(jù)實數(shù)大小比較的方法進行比較即可得答案.【題目詳解】∵32=9,9<10,∴3<,故答案為:<.【題目點撥】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)BD=2【解題分析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據(jù)角平分線性質求出CD=DE,根據(jù)HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質求出即可.20、(1)反比例函數(shù)解析式為y=;(2)C點坐標為(2,1)【解題分析】

(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數(shù)解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數(shù)法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【題目詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數(shù)解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).21、(1)證明見解析;(2)證明見解析.【解題分析】

(1)利用平行線的性質和中點的定義得到,進而得到三角形全等,從而求證結論;(2)利用中垂線的性質和三角形的三邊關系進行判斷即可.【題目詳解】證明:(1)∵BG∥AC∴∵是的中點∴又∵∴△BDG≌△CDF∴(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵∴ED垂直平分DF∴EG=EF∵在△BEG中,BE+BG>GE,∴>【題目點撥】本題考查平行線性質的應用、全等三角形的判定和性質的應用及三角形三邊關系,熟練掌握相關知識點是解題關鍵.22、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解題分析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【題目詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【題目點撥】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.23、(1);(2)k=1【解題分析】

(1)根據(jù)一元二次方程2x2+4x+k﹣1=0有實數(shù)根,可得出△≥0,解不等式即可得出結論;(2)分別把k的正整數(shù)值代入方程2x2+4x+k﹣1=0,根據(jù)解方程的結果進行分析解答.【題目詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數(shù),∴k=1,2,1.當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,解得:x=0或x=-2,有一個根為零;當k=2時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+1=0,解得:x=,無整數(shù)根;當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+2=0,解得:x1=x2=-1,有兩個非零的整數(shù)根.綜上所述:k=1.【題目點撥】本題考查了一元二次方程根的判別式:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(1)△<0?方程沒有實數(shù)根.24、從甲班抽調了35人,從乙班抽調了1人【解題分析】分析:首先設從甲班抽調了x人,那么從乙班抽調了(x﹣1)人,根據(jù)題意列出一元一次方程,從而得出答案.詳解:設從甲班抽調了x人,那么從乙班抽調了(x﹣1)人,由題意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,則x﹣1=35﹣1=1.答:從甲班抽調了35人,從乙班抽調了1人.點睛:本題主要考查的是一元一次方程的應用,屬于基礎題型.理解題目的含義,找出等量關系是解題的關鍵.25、(1)600(2)見解析(3)3200(4)【解題分析】(1)60÷10%=600(人).答:本次參加抽樣調查的居民有600人.(2分)(2)如圖;…(5分)(3)8000×40%=3200(人).答:該居民區(qū)有8000人,估計愛吃D粽的人有3200人.…(7分)(4)如圖;(列表方法略,參照給分).…(8分)P(C粽)==.答:他第二個吃到的恰好是C粽的概率是.…(10分)26、(1)120,補圖見解析;(2)96;(3)960人.【解題分析】

(1)由“不合格”的人數(shù)除以占的百分比求出總人數(shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補全統(tǒng)計圖即可;

(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總人數(shù)即可得到結果;

(3)求出達標占的百分比,乘以1200即可得到結果.【題目詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達標的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達標的學生有960人.故答案為(1)120;(2)96人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵條形統(tǒng)計圖能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論