2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷含解析_第1頁
2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷含解析_第2頁
2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷含解析_第3頁
2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷含解析_第4頁
2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北襄陽老河口四中學中考考前最后一卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y62.-4的相反數是()A. B. C.4 D.-43.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.14.對于函數y=,下列說法正確的是()A.y是x的反比例函數 B.它的圖象過原點C.它的圖象不經過第三象限 D.y隨x的增大而減小5.《孫子算經》是中國傳統(tǒng)數學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.6.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°7.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形8.根據中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10109.如圖,已知∠AOB=70°,OC平分∠AOB,DC∥OB,則∠C為()A.20° B.35° C.45° D.70°10.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.12.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.13.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.14.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.15.的算術平方根是_______.16.如圖,函數y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉30°,交函數y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.17.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.19.(5分)解下列不等式組:20.(8分)先化簡代數式:,再代入一個你喜歡的數求值.21.(10分)研究發(fā)現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發(fā)現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.22.(10分)如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關系,并說明理由.過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.23.(12分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數;(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數.(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.24.(14分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

根據合并同類項的法則,積的乘方,完全平方公式,同底數冪的乘法的性質,對各選項分析判斷后利用排除法求解.【題目詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【題目點撥】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.2、C【解題分析】

根據相反數的定義即可求解.【題目詳解】-4的相反數是4,故選C.【點晴】此題主要考查相反數,解題的關鍵是熟知相反數的定義.3、A【解題分析】

首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質與三角形中位線的性質,即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應邊成比例即可求得BF的值.【題目詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【題目點撥】此題考查了平行四邊形的性質、相似三角形的判定與性質等知識.解此題的關鍵是準確作出輔助線,合理應用數形結合思想解題.4、C【解題分析】

直接利用反比例函數的性質結合圖象分布得出答案.【題目詳解】對于函數y=,y是x2的反比例函數,故選項A錯誤;它的圖象不經過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【題目點撥】此題主要考查了反比例函數的性質,正確得出函數圖象分布是解題關鍵.5、A【解題分析】

根據“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【題目詳解】由題意可得,,故選A.【題目點撥】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.6、B【解題分析】試題解析:延長ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.7、B【解題分析】

如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【題目詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【題目點撥】本題考查了相似多邊形的識別.判定兩個圖形相似的依據是:對應邊成比例,對應角相等,兩個條件必須同時具備.8、B【解題分析】

根據題目中的數據可以用科學記數法表示出來,本題得以解決.【題目詳解】解:3.82億=3.82×108,故選B.【題目點撥】本題考查科學記數法-表示較大的數,解答本題的關鍵是明確科學記數法的表示方法.9、B【解題分析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故選B.10、B【解題分析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1或2【解題分析】

分類討論:點在圓內,點在圓外,根據線段的和差,可得直徑,根據圓的性質,可得答案.【題目詳解】點在圓內,圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.【題目點撥】本題考查點與圓的位置關系,關鍵是分類討論:點在圓內,點在圓外.12、【解題分析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質,掌握位似圖形與相似圖形的關系、相似多邊形的性質是解題的關鍵.13、【解題分析】

根據直角三角形的中點性質結合勾股定理解答即可.【題目詳解】解:,點F是AD的中點,.故答案為:.【題目點撥】此題重點考查學生對勾股定理的理解。熟練掌握勾股定理是解題的關鍵.14、17【解題分析】

根據餅狀圖求出25元所占比重為20%,再根據加權平均數求法即可解題.【題目詳解】解:1-30%-50%=20%,∴.【題目點撥】本題考查了加權平均數的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.15、3【解題分析】

根據算術平方根定義,先化簡,再求的算術平方根.【題目詳解】因為=9所以的算術平方根是3故答案為3【題目點撥】此題主要考查了算術平方根的定義,解題需熟練掌握平方根和算術平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數字0,1,-1的特殊性質.16、-3【解題分析】

作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據旋轉的性質得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數y=即可得到k的值.【題目詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數y=的圖象上,∴k=3×(-)=-3.故答案為-3.【題目點撥】本題是反比例函數綜合題:點在反比例函數圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉的性質以及等腰直角三角形的性質進行線段的轉換與計算.17、【解題分析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.三、解答題(共7小題,滿分69分)18、(1)作圖見解析(2)為等腰三角形【解題分析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【題目詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【題目點撥】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.19、﹣2≤x<.【解題分析】

先分別求出兩個不等式的解集,再求其公共解.【題目詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【題目點撥】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).20、【解題分析】

先根據分式的運算法則進行化簡,再代入使分式有意義的值計算.【題目詳解】解:原式.使原分式有意義的值可取2,當時,原式.【題目點撥】考核知識點:分式的化簡求值.掌握分式的運算法則是關鍵.21、(1)(2)①②【解題分析】【分析】(1)根據關聯點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【題目詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯點;,x=4時,y==4,此時P(4,4),則d=1+=6,不符合定義,不是關聯點;,x=0時,y==0,此時P(0,0),則d=4+5=9,不不符合定義,是關聯點,故答案為;(2)①當時,,,,,此時矩形上的所有點都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時,CF最長,當CF=4時,即=4,解得:t=,如圖3所示時,DF最長,當DF=4時,即DF==4,解得t=,故答案為【題目點撥】本題考查了新定義題,二次函數的綜合,題目較難,讀懂新概念,能靈活應用新概念,結合圖形解題是關鍵.22、解:(1)直線CD和⊙O的位置關系是相切,理由見解析(2)BE=1.【解題分析】試題分析:(1)連接OD,可知由直徑所對的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長,根據切線長定理有DE=EB,根據勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點:1、切線的判定與性質;2、切線長定理;3、勾股定理;4、圓周角定理23、(1)1;(2)詳見解析;(3)750;(4).【解題分析】

(1)用排球的人數÷排球所占的百分比,即可求出抽取學生的人數;(2)足球人數=學生總人數-籃球的人數-排球人數-羽毛球人數-乒乓球人數,即可補全條形統(tǒng)計圖;(3)計算足球的百分比,根據樣本估計總體,即可解答;(4)利用概率公式計算即可.【題目詳解】(1)30÷15%=1(人).答:共抽取1名學生進行問卷調查;故答案為1.(2)足球的人數為:1﹣60﹣30﹣24﹣36=50(人),“足球球”所對應的圓心角的度數為360°×0.25=90°.如圖所示:(3)3000×0.25=750(人).答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論