寧夏固原市涇源縣市級名校2024屆中考一模數學試題含解析_第1頁
寧夏固原市涇源縣市級名校2024屆中考一模數學試題含解析_第2頁
寧夏固原市涇源縣市級名校2024屆中考一模數學試題含解析_第3頁
寧夏固原市涇源縣市級名校2024屆中考一模數學試題含解析_第4頁
寧夏固原市涇源縣市級名校2024屆中考一模數學試題含解析_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寧夏固原市涇源縣市級名校2024屆中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數見下表:文化程度高中大專本科碩士博士人數9172095關于這組文化程度的人數數據,以下說法正確的是:()A.眾數是20 B.中位數是17 C.平均數是12 D.方差是262.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.3.等腰中,,D是AC的中點,于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.504.如圖是二次函數的圖象,有下面四個結論:;;;,其中正確的結論是

A. B. C. D.5.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數的統(tǒng)計結果如下表:班級參加人數平均數中位數方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數多于甲班優(yōu)秀的人數(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③6.隨著我國綜合國力的提升,中華文化影響日益增強,學中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學記數法表示為()A. B. C. D.7.在實數﹣3.5、2、0、﹣4中,最小的數是()A.﹣3.5 B.2 C.0 D.﹣48.如圖顯示了用計算機模擬隨機投擲一枚圖釘的某次實驗的結果.下面有三個推斷:①當投擲次數是500時,計算機記錄“釘尖向上”的次數是308,所以“釘尖向上”的概率是0.616;②隨著試驗次數的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機模擬此實驗,則當投擲次數為1000時,“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③9.小軒從如圖所示的二次函數y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認為其中正確信息的個數有A.2個 B.3個 C.4個 D.5個10.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.11.空氣的密度為0.00129g/cm3,0.00129這個數用科學記數法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣112.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.14.如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.15.若a﹣3有平方根,則實數a的取值范圍是_____.16.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點P是CD中點,BP與半圓交于點Q,連結DQ.給出如下結論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結論是_________.(填寫序號)17.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點D,以點D為圓心作⊙D,使得點A在⊙D外,且點B在⊙D內.設⊙D的半徑為r,那么r的取值范圍是_________.18.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數關系如圖所示.(1)a=,b=;(2)確定y2與x之間的函數關系式:(3)導游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到該景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?20.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當AC=5,BC=6時,求DF的長.21.(6分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?22.(8分)在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設點D的橫坐標為t.(1)如圖1,當0<t<2時,求證:DF∥CB;(2)當t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關系,并證明你的結論;(3)若點M的坐標為(4,-1),在點P運動的過程中,當△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標.23.(8分)如圖,已知AB是圓O的直徑,F是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.24.(10分)某蔬菜生產基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關閉后,大棚內的溫度y(℃)與時間x(h)之間的函數關系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關閉階段.請根據圖中信息解答下列問題:求這天的溫度y與時間x(0≤x≤24)的函數關系式;求恒溫系統(tǒng)設定的恒定溫度;若大棚內的溫度低于10℃時,蔬菜會受到傷害.問這天內,恒溫系統(tǒng)最多可以關閉多少小時,才能使蔬菜避免受到傷害?25.(10分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.26.(12分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系式.求機場大巴與貨車相遇地到機場C的路程.27.(12分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

根據眾數、中位數、平均數以及方差的概念求解.【題目詳解】A、這組數據中9出現的次數最多,眾數為9,故本選項錯誤;B、因為共有5組,所以第3組的人數為中位數,即9是中位數,故本選項錯誤;C、平均數==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【題目點撥】本題考查了中位數、平均數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.2、B【解題分析】根據垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數的定義是解題的關鍵.3、C【解題分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.4、D【解題分析】

根據拋物線開口方向得到,根據對稱軸得到,根據拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【題目詳解】①根據拋物線開口方向得到,根據對稱軸得到,根據拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【題目點撥】本題考查了二次函數的圖像與系數的關系,注意用數形結合的思想解決問題。5、D【解題分析】分析:根據平均數、中位數、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據中位數可以確定,乙班優(yōu)秀的人數多于甲班優(yōu)秀的人數;根據方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數、中位數、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、B【解題分析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】210萬=2100000,2100000=2.1×106,故選B.【題目點撥】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、D【解題分析】

根據任意兩個實數都可以比較大?。龑崝刀即笥?,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小進行比較即可【題目詳解】在實數﹣3.5、2、0、﹣4中,最小的數是﹣4,故選D.【題目點撥】掌握實數比較大小的法則8、B【解題分析】①當頻數增大時,頻率逐漸穩(wěn)定的值即為概率,500次的實驗次數偏低,而頻率穩(wěn)定在了0.618,錯誤;②由圖可知頻數穩(wěn)定在了0.618,所以估計頻率為0.618,正確;③.這個實驗是一個隨機試驗,當投擲次數為1000時,釘尖向上”的概率不一定是0.1.錯誤,故選B.【題目點撥】本題考查了利用頻率估計概率,能正確理解相關概念是解題的關鍵.9、D【解題分析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對稱軸x,∴<1.∴ab>1.故①正確.②如圖,當x=1時,y<1,即a+b+c<1.故②正確.③如圖,當x=﹣1時,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當x=﹣1時,y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對稱軸,則.故⑤正確.綜上所述,正確的結論是①②③④⑤,共5個.故選D.10、B【解題分析】

根據簡單概率的計算公式即可得解.【題目詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.11、C【解題分析】試題分析:0.00129這個數用科學記數法可表示為1.29×10﹣1.故選C.考點:科學記數法—表示較小的數.12、A【解題分析】

根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【題目詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【題目點撥】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6.4【解題分析】

根據平行投影,同一時刻物長與影長的比值固定即可解題.【題目詳解】解:由題可知:,解得:樹高=6.4米.【題目點撥】本題考查了投影的實際應用,屬于簡單題,熟悉投影概念,列比例式是解題關鍵.14、或10【解題分析】

試題分析:根據題意,可分為E點在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當點E在DC上時,點D的對應點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當,所以FQ=點E在DG的延長線上時,點D的對應點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.15、a≥1.【解題分析】

根據平方根的定義列出不等式計算即可.【題目詳解】根據題意,得解得:故答案為【題目點撥】考查平方根的定義,正數有兩個平方根,它們互為相反數,0的平方根是0,負數沒有平方根.16、①②④【解題分析】

①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;

②連接AQ,如圖4,根據勾股定理可求出BP.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求出BQ,從而求出PQ的值,就可得到的值;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求出QH,從而可求出S△DPQ的值;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運用三角函數的定義,就可求出cos∠ADQ的值.【題目詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求得BQ=,則PQ=,∴.故②正確;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求得QH=,∴S△DPQ=DP?QH=××=.故③錯誤;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結論是①②④.故答案為:①②④.【題目點撥】本題主要考查了圓周角定理、平行四邊形的判定與性質、相似三角形的判定與性質、全等三角形的判定與性質、平行線分線段成比例、等腰三角形的性質、平行線的性質、銳角三角函數的定義、勾股定理等知識,綜合性比較強,常用相似三角形的性質、勾股定理、三角函數的定義來建立等量關系,應靈活運用.17、.【解題分析】

先根據勾股定理求出AB的長,進而得出CD的長,由點與圓的位置關系即可得出結論.【題目詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設AD=x,BD=1-x.解得x=,∴點A在圓外,點B在圓內,r的范圍是,故答案為.【題目點撥】本題考查的是點與圓的位置關系,熟知點與圓的三種位置關系是解答此題的關鍵.18、【解題分析】

首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【題目詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到紅球的有1種結果,所以兩次都摸到紅球的概率是,故答案為.【題目點撥】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a=6,b=8;(2);(3)A團有20人,B團有30人.【解題分析】

(1)根據函數圖像,用購票款數除以定價的款數,計算即可求得a的值;用11人到20人的購票款數除以定價的款數,計算即可解得b的值;(2)分0≤x≤10與x>10,利用待定系數法確定函數關系式求得y2的函數關系式即可;(3)設A團有n人,表示出B團的人數為(50-n),然后分0≤x≤10與x>10兩種情況,根據(2)中的函數關系式列出方程求解即可.【題目詳解】(1)由y1圖像上點(10,480),得到10人的費用為480元,∴a=;由y2圖像上點(10,480)和(20,1440),得到20人中后10人的費用為640元,∴b=;(2)0≤x≤10時,設y2=k2x,把(10,800)代入得10k2=800,解得k2=80,∴y2=80x,x>10,設y2=kx+b,把(10,800)和(20,1440)代入得解得∴y2=64x+160∴(3)設B團有n人,則A團的人數為(50-n)當0≤n≤10時80n+48(50-n)=3040,解得n=20(不符合題意舍去)當n>10時,解得n=30.則50-n=20人,則A團有20人,B團有30人.【題目點撥】此題主要考查一次函數的綜合運用,解題的關鍵是熟知待定系數法確定函數關系式.20、(1)詳見解析;(2)詳見解析;(3)DF=.【解題分析】

(1)先判斷出AD⊥BC,即可得出結論;(2)先判斷出OD∥AC,進而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結論;(3)先求出OD,再求出CD=3,進而求出CE,AE,DE,再判斷出,即可得出結論.【題目詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CE?AC,∵AC=5,∴CE=,∴AE=AC-CE=5-=,在Rt△CDE中,根據勾股定理得,DE=,由(2)知,OD∥AC,∴,∴,∴DF=.【題目點撥】此題是圓的綜合題,主要考查了圓的性質,等腰三角形的性質,相似三角形的判斷和性質,勾股定理,判斷出△CDE∽△CAD是解本題的關鍵.21、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米;(2)共有三種調配方案.方案一:型挖據機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解題分析】分析:(1)根據題意列出方程組即可;(2)利用總費用不超過12960元求出方案數量,再利用一次函數增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據機有臺.根據題意,得,因為,解得,又因為,解得,所以.所以,共有三種調配方案.方案一:當時,,即型挖據機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數的性質可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數增減性,解答時先根據題意確定自變量取值范圍,再應用一次函數性質解答問題.22、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解題分析】

(1)求出∠PBO+∠PDO=180°,根據角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據平行線的性質得出即可;

(2)求出∠ABO=∠PDA,根據角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據垂直定義得出即可;

(3)分為兩種情況:根據三角形面積公式求出即可.【題目詳解】(1)證明:如圖1.

∵在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),

∴∠AOB=90°.

∵DP⊥AB于點P,

∴∠DPB=90°,

∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,

∴∠PBO+∠PDO=180°,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠PBO,∠ODF=∠PDO,

∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,

∵在△FDO中,∠OFD+∠ODF=90°,

∴∠CBO=∠DFO,

∴DF∥CB.

(2)直線DF與CB的位置關系是:DF⊥CB,

證明:延長DF交CB于點Q,如圖2,

∵在△ABO中,∠AOB=90°,

∴∠BAO+∠ABO=90°,

∵在△APD中,∠APD=90°,

∴∠PAD+∠PDA=90°,

∴∠ABO=∠PDA,

∵BC平分∠ABO,DF平分∠PDO,

∴∠CBO=∠ABO,∠CDQ=∠PDO,

∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,

∴∠CDQ+∠DCQ=90°,

∴在△QCD中,∠CQD=90°,

∴DF⊥CB.

(3)解:過M作MN⊥y軸于N,

∵M(4,-1),

∴MN=4,ON=1,

當E在y軸的正半軸上時,如圖3,

∵△MCE的面積等于△BCO面積的倍時,

∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,

解得:OE=,

當E在y軸的負半軸上時,如圖4,

×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,

解得:OE=,

即E的坐標是(0,)或(0,-).【題目點撥】本題考查了平行線的性質和判定,三角形內角和定理,坐標與圖形性質,三角形的面積的應用,題目綜合性比較強,有一定的難度.23、(1)證明見解析(2)①②3【解題分析】

(1)作輔助線,連接OE.根據切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【題目詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【題目點撥】本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數形結合解答.24、(1)y關于x的函數解析式為;(2)恒溫系統(tǒng)設定恒溫為20°C;(3)恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.【解題分析】分析:(1)應用待定系數法分段求函數解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當x=5時,y=20∴B坐標為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關于x的函數解析式為:(2)由(1)恒溫系統(tǒng)設定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.點睛:本題為實際應用背景的函數綜合題,考查求得一次函數、反比例函數和常函數關系式.解答時應注意臨界點的應用.25、(1)見解析(2)BD=2【解題分析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據角平分線性質求出CD=DE,根據HL定理求出另三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論