![上海楊浦區(qū)重點名校2024屆中考數(shù)學四模試卷含解析_第1頁](http://file4.renrendoc.com/view11/M03/37/13/wKhkGWWHrPaAVhMOAAHK7lsL0lY173.jpg)
![上海楊浦區(qū)重點名校2024屆中考數(shù)學四模試卷含解析_第2頁](http://file4.renrendoc.com/view11/M03/37/13/wKhkGWWHrPaAVhMOAAHK7lsL0lY1732.jpg)
![上海楊浦區(qū)重點名校2024屆中考數(shù)學四模試卷含解析_第3頁](http://file4.renrendoc.com/view11/M03/37/13/wKhkGWWHrPaAVhMOAAHK7lsL0lY1733.jpg)
![上海楊浦區(qū)重點名校2024屆中考數(shù)學四模試卷含解析_第4頁](http://file4.renrendoc.com/view11/M03/37/13/wKhkGWWHrPaAVhMOAAHK7lsL0lY1734.jpg)
![上海楊浦區(qū)重點名校2024屆中考數(shù)學四模試卷含解析_第5頁](http://file4.renrendoc.com/view11/M03/37/13/wKhkGWWHrPaAVhMOAAHK7lsL0lY1735.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海楊浦區(qū)重點名校2024學年中考數(shù)學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.2.如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規(guī)律.則第(6)個圖形中面積為1的正方形的個數(shù)為()A.20 B.27 C.35 D.403.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.24.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動越小 D.方程無實數(shù)根5.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐6.下列函數(shù)中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.7.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x18.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點,AC與DE相交于點F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.279.一次函數(shù)y=kx+k(k≠0)和反比例函數(shù)在同一直角坐標系中的圖象大致是()A. B. C. D.10.下列幾何體中三視圖完全相同的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.12.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.13.觀察下列各等式:……根據(jù)以上規(guī)律可知第11行左起第一個數(shù)是__.14.在直角三角形ABC中,∠C=90°,已知sinA=3515.若一組數(shù)據(jù)1,2,3,的平均數(shù)是2,則的值為______.16.計算的結(jié)果是_____三、解答題(共8題,共72分)17.(8分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)18.(8分)手機下載一個APP、繳納一定數(shù)額的押金,就能以每小時0.5到1元的價格解鎖一輛自行車任意騎行,共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們在享受科技進步、共享經(jīng)濟帶來的便利的同時,隨意停放、加裝私鎖、推車下河、大卸八塊等毀壞共享單車的行為也層出不窮?某共享單車公司一月投入部分自行車進入市場,一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進入市場,使可使用的自行車達到7500輛.一月份該公司投入市場的自行車至少有多少輛?二月份的損壞率為20%,進入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關(guān)注,毀壞共享單車的行為點燃了國民素質(zhì)的大討論,三月份的損壞率下降為a%,三月底可使用的自行車達到7752輛,求a的值.19.(8分)黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?20.(8分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結(jié)AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.21.(8分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.22.(10分)如圖,在平面直角坐標系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點.求反比例函數(shù)的表達式;點C是第一象限內(nèi)一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點23.(12分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形24.如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.2、B【解題分析】試題解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數(shù)為2+3+4+5+6+7=27個.故選B.考點:規(guī)律型:圖形變化類.3、D【解題分析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【題目詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【題目點撥】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.4、C【解題分析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動越小,是假命題;D、方程x2+x+1=0無實數(shù)根,是真命題;故選:C.考點:命題與定理.5、C【解題分析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.6、B【解題分析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項錯誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D、,每個象限內(nèi),y隨著x的增大而增大,故此選項錯誤;故選B.考點:反比例函數(shù)的性質(zhì);正比例函數(shù)的性質(zhì).7、D【解題分析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.8、D【解題分析】
先根據(jù)AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質(zhì)即可得出結(jié)論.【題目詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【題目點撥】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關(guān)鍵.9、C【解題分析】A、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象過二、四象限可知k<0,兩結(jié)論相矛盾,故選項錯誤;B、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象與y軸交點在y軸的正半軸可知k>0,兩結(jié)論相矛盾,故選項錯誤;C、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象過二、三、四象限可知k<0,兩結(jié)論一致,故選項正確;D、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象與y軸交點在y軸的負半軸可知k<0,兩結(jié)論相矛盾,故選項錯誤,故選C.10、A【解題分析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【題目詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【題目點撥】考查三視圖的有關(guān)知識,注意三視圖都相同的常見的幾何體有球和正方體.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】
利用特殊三角形的三邊關(guān)系,求出AM,AE長,求比值.【題目詳解】解:如圖所示,設(shè)BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【題目點撥】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關(guān)系.12、15cm、17cm、19cm.【解題分析】試題解析:設(shè)三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關(guān)系.13、-1.【解題分析】
觀察規(guī)律即可解題.【題目詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數(shù)比右側(cè)的數(shù)大一,∴第11行左起第一個數(shù)是-1.【題目點撥】本題是一道規(guī)律題,屬于簡單題,認真審題找到規(guī)律是解題關(guān)鍵.14、35【解題分析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數(shù)的關(guān)系.15、1【解題分析】
根據(jù)這組數(shù)據(jù)的平均數(shù)是1和平均數(shù)的計算公式列式計算即可.【題目詳解】∵數(shù)據(jù)1,1,3,的平均數(shù)是1,∴,解得:.故答案為:1.【題目點撥】本題考查了平均數(shù)的定義,根據(jù)平均數(shù)的定義建立方程求解是解題的關(guān)鍵.16、【解題分析】【分析】根據(jù)二次根式的運算法則進行計算即可求出答案.【題目詳解】==,故答案為.【題目點撥】本題考查二次根式的運算,解題的關(guān)鍵是熟練運用二次根式的運算法則.三、解答題(共8題,共72分)17、(1)38°;(2)20.4m.【解題分析】
(1)過點C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學樓的高.【題目詳解】(1)過點C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CE?tan20°≈10.80m,在Rt△CDE中,DE=CD?tan18°≈9.60m,∴教學樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學樓的高約為20.4m.【題目點撥】本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,正確添加輔助線構(gòu)建直角三角形、熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.18、(1)7000輛;(2)a的值是1.【解題分析】
(1)設(shè)一月份該公司投入市場的自行車x輛,根據(jù)損壞率不低于10%,可得不等量關(guān)系:一月初投入的自行車-一月底可用的自行車≥一月?lián)p壞的自行車列不等式求解;(2)根據(jù)三月底可使用的自行車達到7752輛,可得等量關(guān)系為:(二月份剩余的可用自行車+三月初投入的自行車)×三月份的損耗率=7752輛列方程求解.【題目詳解】解:(1)設(shè)一月份該公司投入市場的自行車x輛,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份該公司投入市場的自行車至少有7000輛;(2)由題意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,化簡,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵,解得a<80,∴a=1,答:a的值是1.【題目點撥】本題考查了一元一次不等式和一元二次方程的實際應(yīng)用,根據(jù)一月底的損壞率不低于10%找出不等量關(guān)系式解答(1)的關(guān)鍵;根據(jù)三月底可使用的自行車達到7752輛找出等量關(guān)系是解答(2)的關(guān)鍵.19、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解題分析】
(1)設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設(shè)雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=寢室數(shù)×每間寢室可住人數(shù),可找出w關(guān)于y的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【題目詳解】(1)解:設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數(shù)量的年平均增長率為37.5%.(2)解:設(shè)雙人間有y間,可容納人數(shù)為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數(shù)量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據(jù)題意得:w=2y+20y+121﹣6y=16y+121,∴當y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【題目點撥】本題考查了一元二次方程的應(yīng)用、一元一次不等式組的應(yīng)用以及一次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量之間的關(guān)系,找出w關(guān)于y的函數(shù)關(guān)系式.20、(1);(2)見解析;(3)【解題分析】
(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設(shè)AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【題目詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設(shè)AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【題目點撥】本題考查了相似三角形的判定與性質(zhì),準確作出輔助線,構(gòu)造相似三角形是解決本題的關(guān)鍵,也是求解的難點.21、(1);(2)見解析;(3)【解題分析】
(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長.【題目詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)連接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線;(3)設(shè)AD=x,則BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.【題目點撥】本題考查切線的證明及圓與三角形相似的綜合,為中考??碱}型,需引起重視.22、(1)反比例函數(shù)的表達式為y=4x(x>0);(2)點P【解題分析】
(1)根據(jù)點A(a,2),B(4,b)在一次函數(shù)y=﹣12x+3的圖象上求出a、b的值,得出A、B(2)延長CA交y軸于點E,延長CB交x軸于點F,構(gòu)建矩形OECF,根據(jù)S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF,設(shè)點P(0,m),根據(jù)反比例函數(shù)的幾何意義解答即可.【題目詳解】(1)∵點A(a,2),B(4,b)在一次函數(shù)y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴點A的坐標為(2,2),點B的坐標為(4,1),又∵點A(2,2)在反比例函數(shù)y=kx∴k=2×2=4,∴反比例函數(shù)的表達式為y=4x(x(2)延長CA交y軸于點E,延長CB交x軸于點F,∵AC∥x軸,BC∥y軸,則有CE⊥y軸,CF⊥x軸,點C的坐標為(4,2)∴四邊形OECF為矩形,且CE=4,CF=2,∴S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,設(shè)點P的坐標為(0,m),則S△OAP=12×2?|m∴m=±4,∴點P的坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程安全協(xié)議書
- 交通運輸協(xié)調(diào)居間服務(wù)合同
- 建筑工程施工三方協(xié)議書
- 二零二五年度報關(guān)員勞動合同違約責任及處理合同
- 農(nóng)業(yè)智慧化發(fā)展方案
- 人才獵頭服務(wù)協(xié)議
- 木片購銷合同
- 環(huán)境治理技術(shù)合作協(xié)議
- 農(nóng)業(yè)機械租賃合同
- 《金融基礎(chǔ)》課件
- 上海中學國際部幼升小面試真題
- 贏在團隊執(zhí)行力課件
- 慢性胰腺炎課件
- 北京理工大學應(yīng)用光學課件第四章
- 陰道鏡幻燈課件
- 2022年山東司法警官職業(yè)學院單招語文試題及答案解析
- PCB行業(yè)安全生產(chǎn)常見隱患及防范措施課件
- DB32∕T 186-2015 建筑消防設(shè)施檢測技術(shù)規(guī)程
- 2022年福建泉州中考英語真題【含答案】
- 汽車座椅骨架的焊接夾具畢業(yè)設(shè)計說明書(共23頁)
- 露天礦山職業(yè)危害預先危險分析表
評論
0/150
提交評論