版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省揚州市江都區(qū)等六校中考考前最后一卷數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)2.化簡的結(jié)果是()A. B. C. D.3.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.4.已知二次函數(shù),當(dāng)自變量取時,其相應(yīng)的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關(guān)系不確定5.下列說法錯誤的是()A.的相反數(shù)是2 B.3的倒數(shù)是C. D.,0,4這三個數(shù)中最小的數(shù)是06.下列關(guān)于x的方程一定有實數(shù)解的是()A. B.C. D.7.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動的時間如下表所示,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()勞動時間(小時)33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.58.計算4×(–9)的結(jié)果等于A.32 B.–32 C.36 D.–369.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.10.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,611.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.112.計算-3-1的結(jié)果是()A.2B.-2C.4D.-4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若正六邊形的邊長為2,則此正六邊形的邊心距為______.14.函數(shù)y=的自變量x的取值范圍為____________.15.九(5)班有男生27人,女生23人,班主任發(fā)放準考證時,任意抽取一張準考證,恰好是女生的準考證的概率是________________.16.若反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),則這個反比例函數(shù)的表達式為_____.17.若關(guān)于x的方程的解是正數(shù),則m的取值范圍是____________________18.已知二次函數(shù)的部分圖象如圖所示,則______;當(dāng)x______時,y隨x的增大而減?。?、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉(zhuǎn)60°得到點E,連接CE.(1)當(dāng)點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當(dāng)△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)20.(6分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結(jié)束,且速度均為1cm/s,設(shè)運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?21.(6分)已知:如圖,E,F(xiàn)是?ABCD的對角線AC上的兩點,BE∥DF.求證:AF=CE.22.(8分)平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.(1)設(shè)a=2,點B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.23.(8分)已知,關(guān)于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.24.(10分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.25.(10分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形26.(12分)某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?27.(12分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對條件進行分析后,甲得到結(jié)論①:“E是BC中點”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
首先根據(jù)各選項棋子的位置,進而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【題目詳解】解:A、當(dāng)擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當(dāng)擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當(dāng)擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當(dāng)擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【題目點撥】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關(guān)鍵.2、D【解題分析】
將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【題目詳解】原式=×=×(+1)=2+.故選D.【題目點撥】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關(guān)鍵.3、B【解題分析】
如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【題目詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【題目點撥】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).4、B【解題分析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【題目詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設(shè)拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應(yīng)的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側(cè),x=m-1時,y>0,故選B.【題目點撥】本題考查二次函數(shù)圖象上的點的坐標特征,解題的關(guān)鍵是學(xué)會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.5、D【解題分析】試題分析:﹣2的相反數(shù)是2,A正確;3的倒數(shù)是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數(shù)中最小的數(shù)是﹣11,D錯誤,故選D.考點:1.相反數(shù);2.倒數(shù);3.有理數(shù)大小比較;4.有理數(shù)的減法.6、A【解題分析】
根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【題目詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數(shù)根,符合題意;
B.a(chǎn)x=3中當(dāng)a=0時,方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.【題目點撥】本題主要考查方程的解,解題的關(guān)鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.7、A【解題分析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【題目詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個人,∴第4個人的勞動時間為中位數(shù),所以中位數(shù)為4,故選A.【題目點撥】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.8、D【解題分析】
根據(jù)有理數(shù)的乘法法則進行計算即可.【題目詳解】故選:D.【題目點撥】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.9、A【解題分析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【題目點撥】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點的位置.10、C【解題分析】
解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【題目點撥】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).11、B【解題分析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.12、D【解題分析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解題分析】
連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【題目詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.14、x≥-1【解題分析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點:函數(shù)自變量的取值范圍.15、23【解題分析】
用女生人數(shù)除以總?cè)藬?shù)即可.【題目詳解】由題意得,恰好是女生的準考證的概率是2350故答案為:2350【題目點撥】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn16、y=﹣.【解題分析】
把交點坐標代入兩個解析式組成方程組,解方程組求得k,即可求得反比例函數(shù)的解析式.【題目詳解】解:∵反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),∴,解得k=﹣5,∴反比例函數(shù)的表達式為y=﹣,故答案為y=﹣.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)圖象上點的坐標特征得出方程組是解題的關(guān)鍵.17、m<4且m≠2【解題分析】解方程得x=4-m,由已知可得x>0且x-2≠0,則有4-m>0且4-m-2≠0,解得:m<4且m≠2.18、3,>1【解題分析】
根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【題目詳解】解:因為二次函數(shù)的圖象過點.
所以,
解得.
由圖象可知:時,y隨x的增大而減?。?/p>
故答案為(1).3,(2).>1【題目點撥】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關(guān)鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解題分析】
(1)如圖1中,當(dāng)點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形;(3)如圖4中,當(dāng)E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【題目詳解】解:(1)如圖1中,當(dāng)點E在BC上時.
∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.
(3)如圖4中,當(dāng)E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設(shè)E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【題目點撥】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,學(xué)會利用垂線段最短解決最值問題,屬于中考壓軸題.20、(1)證明見解析;(2)當(dāng)t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解題分析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標即可;(3)當(dāng)△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【題目詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時,可得P1(3,0),P3(6,3),當(dāng)AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【題目點撥】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.21、參見解析.【解題分析】分析:先證∠ACB=∠CAD,再證出△BEC≌△DFA,從而得出CE=AF.詳解:證明:平行四邊形中,,,.又,,,點睛:本題利用了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì).22、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解題分析】分析:(1)由已知代入點坐標即可;(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;(3)設(shè)出點A、A′坐標,依次表示AD、AF及點P坐標.詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當(dāng)y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當(dāng)x=a時,點D縱坐標為,∴AD=∵AD=AF,∴點F和點P橫坐標為,∴點P縱坐標為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質(zhì),解答過程中,涉及到了面積轉(zhuǎn)化方法、待定系數(shù)法和數(shù)形結(jié)合思想.23、0≤k≤且k≠1.【解題分析】
根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可求出k的取值范圍.【題目詳解】解:∵關(guān)于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【題目點撥】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,列出關(guān)于k的一元一次不等式組是解題的關(guān)鍵.當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.24、(1)答案見解析;(2)AB=1BE;(1)1.【解題分析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.25、(1);(2);(3).【解題分析】
(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進而得出,根據(jù)30°直角三角形的性質(zhì)即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實驗室生物危害及生物安全安全培訓(xùn)課件
- 重慶市2024-2025學(xué)年高二上學(xué)期期末考試語文試卷(含答案)
- 公關(guān)部部門年終總結(jié)
- Unit 4 Never too old to learn Reading I 說課稿-2023-2024學(xué)年高中英語牛津譯林版(2020)選擇性必修第四冊
- 江西省上饒市2024-2025學(xué)年度第一學(xué)期七年級道德與法治上冊期末綠色評價試卷(含答案)
- 廣東省深圳市龍崗區(qū)2024-2025學(xué)年高三上學(xué)期期末質(zhì)量監(jiān)測歷史試題(含答案)
- 貴州省六盤水市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版課后作業(yè)(上學(xué)期)試卷及答案
- 2025商業(yè)地產(chǎn)蛇年新春盛宴奇妙游(畫蛇添福蛇我麒誰主題)活動策劃方案-54正式版
- 人教版初中歷史與社會七年級上冊 3.3.1耕海牧漁 說課稿
- 貴州輕工職業(yè)技術(shù)學(xué)院《房屋建筑學(xué)與城市規(guī)劃導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- IWE(國際焊接工程師)考試試題生產(chǎn)模塊
- 前處理工藝流程
- 共建聯(lián)合研究院合作范本
- 建筑施工安全生產(chǎn)責(zé)任保險承保機構(gòu)考評辦法
- 趙一鳴員工考核內(nèi)容
- 跌倒案例分析
- 危急值報告制度及處理流程培訓(xùn)課件
- 新北師大版八年級下冊數(shù)學(xué)(全冊知識點考點梳理、重點題型分類鞏固練習(xí))(基礎(chǔ)版)(家教、補習(xí)、復(fù)習(xí)用)
- 公司崗位權(quán)責(zé)劃分表
- 電壓10kV及以下送配電系統(tǒng)調(diào)試報告
- 用合像水平儀測量直線誤差
評論
0/150
提交評論