2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題含解析_第1頁
2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題含解析_第2頁
2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題含解析_第3頁
2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題含解析_第4頁
2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年云南省楚雄州姚安縣一中數(shù)學高三上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.2.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.43.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.4.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-25.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.6.函數(shù)的對稱軸不可能為()A. B. C. D.7.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]8.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.129.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-310.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.11.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要12.已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是()A.29 B.30 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.若在上單調(diào)遞減,則的取值范圍是_______14.為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據(jù)產(chǎn)品標準,單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.15.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結果用最簡分數(shù)表示)16.已知,,,的夾角為30°,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.18.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.19.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.20.(12分)為了解網(wǎng)絡外賣的發(fā)展情況,某調(diào)查機構從全國各城市中抽取了100個相同等級地城市,分別調(diào)查了甲乙兩家網(wǎng)絡外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.21.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.2、C【解析】

①:由拋物線的定義可知,從而可求的坐標;②:做關于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設出直線方程,聯(lián)立直線與拋物線方程,結合韋達定理,可知焦點坐標的關系,進而可求,從而可判斷出的關系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設,由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設,則關于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設方程為:,設與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結合初中的“飲馬問題”分析出何時取最小值.3、D【解析】

使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.4、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎題.5、D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,,所以是函數(shù)的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.6、D【解析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.7、B【解析】

先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.8、D【解析】

推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.9、D【解析】

設,,設:,聯(lián)立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設直線為可以簡化運算,是解題的關鍵.10、D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.11、B【解析】

由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.12、B【解析】

設正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計算即可得到所求.【詳解】設正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5===1.故選C.【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質(zhì),考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得導數(shù)在恒成立,解出即可.【詳解】解:由題意,,當時,顯然,符合題意;當時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.14、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時常犯的錯誤.15、【解析】

依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可?!驹斀狻俊叭稳蓚€數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是?!军c睛】本題主要考查古典概型的概率求法。16、1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,且定值為2【解析】

(1)設出點坐標并代入橢圓方程,根據(jù)列方程,求得的值,結合求得的值,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點的橫坐標,聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點在橢圓:()上,可設,即,又,且,可得橢圓的方程為.(2)設直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.18、(1)x=1(2)證明見解析(3)【解析】

(1)令,根據(jù)導函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進而求解;(2)轉化思想,要證,即證,即證,構造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設,分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調(diào)遞增;當時,,在單調(diào)遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設,,記,△,①當△時,即時,恒成立,故單調(diào)遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設的兩個不等實根分別為,,又,于是,故當時,,從而在單調(diào)遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調(diào)性,零點;(2)考查轉化思想,構造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導;屬于難題.19、(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.20、(1)見解析,有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①4.911②100萬元.【解析】

(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計算的觀測值,即可結合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結合正態(tài)分布曲線性質(zhì)可求得,再由二項分布的數(shù)學期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計算出開展營銷活動與不開展營銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論