版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河南省周口市扶溝高級(jí)中學(xué)數(shù)學(xué)高三第一學(xué)期期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.02.若復(fù)數(shù)滿足,則()A. B. C. D.3.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.4.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.5.已知平面向量,滿足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.16.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.7.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.10.“紋樣”是中國(guó)藝術(shù)寶庫(kù)的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.11.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.已知正三角形的邊長(zhǎng)為2,為邊的中點(diǎn),、分別為邊、上的動(dòng)點(diǎn),并滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護(hù)士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護(hù)士,其中甲乙兩名護(hù)士不到同一地,共有__________種選派方法.14.將一顆質(zhì)地均勻的正方體骰子(每個(gè)面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的的概率是___.15.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.16.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上不同兩點(diǎn),如果在曲線上存在點(diǎn),使得①;②曲線在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線”請(qǐng)說(shuō)明理由18.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)19.(12分)已知函數(shù),.(1)當(dāng)時(shí),①求函數(shù)在點(diǎn)處的切線方程;②比較與的大小;(2)當(dāng)時(shí),若對(duì)時(shí),,且有唯一零點(diǎn),證明:.20.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.21.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.22.(10分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.2、C【解析】
化簡(jiǎn)得到,,再計(jì)算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn),共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計(jì)算能力.3、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.4、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.5、B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡(jiǎn)可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問(wèn)題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.6、C【解析】
由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.7、A【解析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.8、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.9、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問(wèn)題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.10、D【解析】
直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.11、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.12、A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點(diǎn),通過(guò),找出與的關(guān)系.通過(guò)數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識(shí),求出其值域,即為的取值范圍.【詳解】以D為原點(diǎn),BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點(diǎn),所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】
先求出每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù),再減去甲乙兩名護(hù)士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù)有,若甲乙兩名護(hù)士到同一地的種數(shù)有,則甲乙兩名護(hù)士不到同一地的種數(shù)有.故答案為:.【點(diǎn)睛】本題考查利用間接法求排列組合問(wèn)題,正難則反,是基礎(chǔ)題.14、【解析】
先求出基本事件總數(shù)6×6=36,再由列舉法求出“點(diǎn)數(shù)之和等于6”包含的基本事件的個(gè)數(shù),由此能求出“點(diǎn)數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點(diǎn)數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點(diǎn)睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.15、【解析】
先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來(lái),利用函數(shù)思想來(lái)判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.16、1【解析】
利用輔助角公式化簡(jiǎn)可得,由題可分析的最小值等于表示相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,進(jìn)而求解即可.【詳解】由題,,因?yàn)?,且的最小值等于,即相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,所以,即,所以,故答案為:1【點(diǎn)睛】本題考查正弦型函數(shù)的對(duì)稱性的應(yīng)用,考查三角函數(shù)的化簡(jiǎn).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析(2)不存在,見解析【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問(wèn)題,即可說(shuō)明.【詳解】(1)函數(shù)的定義域?yàn)?,所以?dāng)時(shí),;,所以函數(shù)在上單調(diào)遞增當(dāng)時(shí),①當(dāng)時(shí),函數(shù)在上遞增②,顯然無(wú)增區(qū)間;③當(dāng)時(shí),,函數(shù)在上遞增,綜上當(dāng)函數(shù)在上單調(diào)遞增.當(dāng)時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí)函數(shù)無(wú)單調(diào)遞增區(qū)間當(dāng)時(shí)函數(shù)在上單調(diào)遞增(2)假設(shè)函數(shù)存在“中值相依切線”設(shè)是曲線上不同的兩個(gè)點(diǎn),且則曲線在點(diǎn)處的切線的斜率為,.令,則,單調(diào)遞增,,故無(wú)解,假設(shè)不成立綜上,假設(shè)不成立,所以不存在“中值相依切線”【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)的應(yīng)用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)證明見解析.【解析】
(1)求出函數(shù)的定義域?yàn)?,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域?yàn)?,?當(dāng)時(shí),對(duì)任意的,,此時(shí)函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時(shí),令,得.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實(shí)數(shù)的取值范圍是;(2)當(dāng)時(shí),,定義域?yàn)椋?,?dāng)時(shí),;當(dāng)時(shí),.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個(gè)零點(diǎn)、且,,,構(gòu)造函數(shù),其中,,令,,當(dāng)時(shí),,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時(shí)也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于難題.19、(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點(diǎn)斜式求函數(shù)在點(diǎn)處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.(2)由題意,,在上有唯一零點(diǎn).利用導(dǎo)數(shù)可得當(dāng)時(shí),在上單調(diào)遞減,當(dāng),時(shí),在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時(shí),,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時(shí),,即;當(dāng)時(shí),,即;當(dāng)時(shí),,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點(diǎn).當(dāng)時(shí),,在上單調(diào)遞減,當(dāng),時(shí),,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.20、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《標(biāo)準(zhǔn)理解與實(shí)施》課件
- 《盾構(gòu)施工測(cè)量培訓(xùn)》課件
- 《員工安全教育講義》課件
- 《測(cè)序技術(shù)介紹》課件
- 單位管理制度集合大全職工管理篇
- 單位管理制度集粹選集員工管理篇十篇
- 單位管理制度匯編大全職工管理篇
- 單位管理制度合并匯編【職員管理篇】
- 《客服分析報(bào)告會(huì)》課件
- 單位管理制度分享合集【人力資源管理】十篇
- 儲(chǔ)能系統(tǒng)技術(shù)服務(wù)合同
- GB/T 1094.7-2024電力變壓器第7部分:油浸式電力變壓器負(fù)載導(dǎo)則
- 電大西方行政學(xué)說(shuō)
- 2024-2025學(xué)年人教版數(shù)學(xué)七年級(jí)上冊(cè)期末復(fù)習(xí)卷(含答案)
- 2024年度中國(guó)PE、VC基金行業(yè)CFO白皮書
- 2023年南京市江寧區(qū)招聘教師考試真題
- 《中國(guó)民族史》重點(diǎn)筆記(期末)
- 中南大學(xué)《物聯(lián)網(wǎng)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷
- 第三方物流供應(yīng)商準(zhǔn)入與考核制度
- 基于Python的去哪兒網(wǎng)酒店數(shù)據(jù)采集與分析
- 2025版國(guó)家開放大學(xué)法律事務(wù)專科《法律咨詢與調(diào)解》期末紙質(zhì)考試單項(xiàng)選擇題題庫(kù)
評(píng)論
0/150
提交評(píng)論