2024屆江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題含解析_第1頁
2024屆江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題含解析_第2頁
2024屆江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題含解析_第3頁
2024屆江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題含解析_第4頁
2024屆江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華中考五模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在如圖所示的計(jì)算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象應(yīng)為()A. B. C. D.2.一元二次方程mx2+mx﹣=0有兩個(gè)相等實(shí)數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.23.下列運(yùn)算正確的是()A.(a2)4=a6 B.a(chǎn)2?a3=a6 C. D.4.一元二次方程的根是()A. B.C. D.5.下列哪一個(gè)是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點(diǎn)的半徑C.(3,﹣2)關(guān)于y軸的對稱點(diǎn)為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=26.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.7.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C處,P為直線AD上的一點(diǎn),則線段BP的長可能是()A.3 B.5 C.6 D.108.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學(xué)記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10119.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計(jì)算10.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,每個(gè)小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.12.分解因式:3a2﹣12=___.13.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.14.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)30°得到線段PC,連接BC.若點(diǎn)A的坐標(biāo)為(﹣1,0),則線段BC的長為_____.15.已知拋物線與直線在之間有且只有一個(gè)公共點(diǎn),則的取值范圍是__.16.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點(diǎn)D,點(diǎn)E在AC上,直線DE與⊙O相切于點(diǎn)D.已知∠CDE=20°,則的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,為了測量建筑物AB的高度,在D處樹立標(biāo)桿CD,標(biāo)桿的高是2m,在DB上選取觀測點(diǎn)E、F,從E測得標(biāo)桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)18.(8分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.求坡底C點(diǎn)到大樓距離AC的值;求斜坡CD的長度.19.(8分)為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.20.(8分)已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.21.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點(diǎn)D作DF⊥BC交BC的延長線于點(diǎn)F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c222.(10分)如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.23.(12分)立定跳遠(yuǎn)是嘉興市體育中考的抽考項(xiàng)目之一,某校九年級(1),(2)班準(zhǔn)備集體購買某品牌的立定跳遠(yuǎn)訓(xùn)練鞋.現(xiàn)了解到某網(wǎng)店正好有這種品牌訓(xùn)練鞋的促銷活動(dòng),其購買的單價(jià)y(元/雙)與一次性購買的數(shù)量x(雙)之間滿足的函數(shù)關(guān)系如圖所示.當(dāng)10≤x<60時(shí),求y關(guān)于x的函數(shù)表達(dá)式;九(1),(2)班共購買此品牌鞋子100雙,由于某種原因需分兩次購買,且一次購買數(shù)量多于25雙且少于60雙;①若兩次購買鞋子共花費(fèi)9200元,求第一次的購買數(shù)量;②如何規(guī)劃兩次購買的方案,使所花費(fèi)用最少,最少多少元?24.如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點(diǎn)的四邊形是平行四邊形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

先求出一次函數(shù)的關(guān)系式,再根據(jù)函數(shù)圖象與坐標(biāo)軸的交點(diǎn)及函數(shù)圖象的性質(zhì)解答即可.【題目詳解】由題意知,函數(shù)關(guān)系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當(dāng)x=0時(shí),y=4,當(dāng)y=0時(shí),x=1.故選D.【題目點(diǎn)撥】本題考查學(xué)生對計(jì)算程序及函數(shù)性質(zhì)的理解.根據(jù)計(jì)算程序可知此計(jì)算程序所反映的函數(shù)關(guān)系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質(zhì)求解.2、C【解題分析】

由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗(yàn)即可得到滿足題意m的值.【題目詳解】∵一元二次方程mx1+mx﹣=0有兩個(gè)相等實(shí)數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗(yàn)m=0不合題意,則m=﹣1.故選C.【題目點(diǎn)撥】此題考查了根的判別式,根的判別式的值大于0,方程有兩個(gè)不相等的實(shí)數(shù)根;根的判別式的值等于0,方程有兩個(gè)相等的實(shí)數(shù)根;根的判別式的值小于0,方程沒有實(shí)數(shù)根.3、C【解題分析】

根據(jù)冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法計(jì)算即可.【題目詳解】A、原式=a8,所以A選項(xiàng)錯(cuò)誤;B、原式=a5,所以B選項(xiàng)錯(cuò)誤;C、原式=,所以C選項(xiàng)正確;D、與不能合并,所以D選項(xiàng)錯(cuò)誤.故選:C.【題目點(diǎn)撥】本題考查了冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運(yùn)算法則是解答本題的關(guān)鍵.4、D【解題分析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.5、C【解題分析】分析:根據(jù)每個(gè)選項(xiàng)所涉及的數(shù)學(xué)知識(shí)進(jìn)行分析判斷即可.詳解:A選項(xiàng)中,“五邊形的外角和為360°”是真命題,故不能選A;B選項(xiàng)中,“切線垂直于經(jīng)過切點(diǎn)的半徑”是真命題,故不能選B;C選項(xiàng)中,因?yàn)辄c(diǎn)(3,-2)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)是(-3,-2),所以該選項(xiàng)中的命題是假命題,所以可以選C;D選項(xiàng)中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點(diǎn)睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點(diǎn)P(a,b)關(guān)于y軸的對稱點(diǎn)為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學(xué)知識(shí),是正確解答本題的關(guān)鍵.6、A【解題分析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點(diǎn)睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、D【解題分析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點(diǎn)B到AD的最短距離是8,得出選項(xiàng)即可.【題目詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點(diǎn)B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項(xiàng)D符合,

故選D.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點(diǎn)到角的兩邊的距離相等.8、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【題目詳解】31600000000=3.16×1.故選:C.【題目點(diǎn)撥】本題考查科學(xué)記數(shù)法,解題的關(guān)鍵是掌握科學(xué)記數(shù)法的表示.9、B【解題分析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【題目詳解】把△IBE繞B順時(shí)針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【題目點(diǎn)撥】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.10、B【解題分析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個(gè)分支分別位于一、三象限.

故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解題分析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點(diǎn):1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.12、3(a+2)(a﹣2)【解題分析】要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).13、x>﹣1.【解題分析】

一次函數(shù)y=kx+b的圖象在x軸下方時(shí),y<0,再根據(jù)圖象寫出解集即可.【題目詳解】當(dāng)不等式kx+b<0時(shí),一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【題目點(diǎn)撥】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合.14、22【解題分析】

只要證明△PBC是等腰直角三角形即可解決問題.【題目詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【題目點(diǎn)撥】本題考查翻折變換、坐標(biāo)與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是證明△PBC是等腰直角三角形.15、或.【解題分析】

聯(lián)立方程可得,設(shè),從而得出的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),求出此時(shí)m的值;當(dāng)△時(shí),要使在之間有且只有一個(gè)公共點(diǎn),則當(dāng)x=-2時(shí)和x=2時(shí)y的值異號,從而求出m的取值范圍;【題目詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個(gè)公共點(diǎn),即的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),即△解得:,當(dāng)時(shí),當(dāng)時(shí),,滿足題意,當(dāng)△時(shí),令,,令,,,令代入解得:,此方程的另外一個(gè)根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【題目點(diǎn)撥】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點(diǎn)問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點(diǎn)問題轉(zhuǎn)化為一元二次方程解的問題是解決此題的關(guān)鍵.16、7π【解題分析】

連接OD,由切線的性質(zhì)和已知條件可求出∠AOD的度數(shù),再根據(jù)弧長公式即可求出的長.【題目詳解】連接OD,∵直線DE與⊙O相切于點(diǎn)D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【題目點(diǎn)撥】本題考查了切線的性質(zhì)、等腰三角形的判斷和性質(zhì)以及弧長公式的運(yùn)用,求出∠AOD的度數(shù)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、建筑物AB的高度約為5.9米【解題分析】

在△CED中,得出DE,在△CFD中,得出DF,進(jìn)而得出EF,列出方程即可得出建筑物AB的高度;【題目詳解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度約為5.9米.【題目點(diǎn)撥】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答問題.18、(1)坡底C點(diǎn)到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解題分析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點(diǎn)到大樓距離AC的值是20米.(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點(diǎn)睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.19、(1)50;(2)240;(3).【解題分析】

用喜愛社會(huì)實(shí)踐的人數(shù)除以它所占的百分比得到n的值;先計(jì)算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計(jì)該校喜愛看電視的學(xué)生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計(jì)該校喜愛看電視的學(xué)生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【題目點(diǎn)撥】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率,也考查了統(tǒng)計(jì)圖.20、等腰直角三角形【解題分析】

首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【題目詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形或等腰直角三角形.考點(diǎn):勾股定理的逆定理.21、見解析.【解題分析】

首先連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【題目詳解】證明:連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【題目點(diǎn)撥】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.22、(1)證明見解析;(2).【解題分析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【題目詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【題目點(diǎn)撥】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.23、(1)y=150﹣x;(2)①第一批購買數(shù)量為30雙或40雙.②第一次買26雙,第二次買74雙最省錢,最少9144元.【解題分析】

(1)若購買x雙(10<x<1),每件的單價(jià)=140﹣(購買數(shù)量﹣10),依此可得y關(guān)于x的函數(shù)關(guān)系式;(2)①設(shè)第一批購買x雙,則第二批購買(100﹣x)雙,根據(jù)購買兩批鞋子一共花了9200元列出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論