版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江西省九江市九江第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,那么該雙曲線的離心率為()A. B. C. D.2.已知盒中有3個(gè)紅球,3個(gè)黃球,3個(gè)白球,且每種顏色的三個(gè)球均按,,編號(hào),現(xiàn)從中摸出3個(gè)球(除顏色與編號(hào)外球沒(méi)有區(qū)別),則恰好不同時(shí)包含字母,,的概率為()A. B. C. D.3.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.4.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.6.已知集合,,則()A. B. C. D.7.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.8.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.9.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過(guò)F作AF的垂線與雙曲線交于B,C兩點(diǎn),過(guò)B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.10.在很多地鐵的車(chē)廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個(gè)坐位的寬度(),每個(gè)座位寬度為,估計(jì)彎管的長(zhǎng)度,下面的結(jié)果中最接近真實(shí)值的是()A. B. C. D.11.已知向量,,若,則()A. B. C.-8 D.812.下列函數(shù)中既關(guān)于直線對(duì)稱(chēng),又在區(qū)間上為增函數(shù)的是()A.. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某高中共有1800人,其中高一、高二、高三年級(jí)的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級(jí)被抽取的人數(shù)為_(kāi)_______.14.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.15.在的展開(kāi)式中,各項(xiàng)系數(shù)之和為,則展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________________.16.展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過(guò)點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).18.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)已知數(shù)列和滿(mǎn)足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù).(1)解不等式:;(2)求證:.21.(12分)定義:若數(shù)列滿(mǎn)足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱(chēng)為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.22.(10分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計(jì)男女合計(jì)已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請(qǐng)說(shuō)明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶(hù)外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對(duì)身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問(wèn)卷調(diào)查,求所選的人中至少有一位從事的是戶(hù)外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過(guò)雙曲線的焦點(diǎn)的弦長(zhǎng)求離心率.弦過(guò)焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng).2、B【解析】
首先求出基本事件總數(shù),則事件“恰好不同時(shí)包含字母,,”的對(duì)立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”,記事件“恰好不同時(shí)包含字母,,”為,利用對(duì)立事件的概率公式計(jì)算可得;【詳解】解:從9個(gè)球中摸出3個(gè)球,則基本事件總數(shù)為(個(gè)),則事件“恰好不同時(shí)包含字母,,”的對(duì)立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”記事件“恰好不同時(shí)包含字母,,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識(shí),解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.3、B【解析】
根據(jù)二次函數(shù)圖象的對(duì)稱(chēng)軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱(chēng)軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)椋院瘮?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.4、C【解析】
根據(jù)充分條件和必要條件的定義結(jié)合對(duì)數(shù)的運(yùn)算進(jìn)行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.5、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.6、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.7、D【解析】
通過(guò)計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.8、B【解析】
畫(huà)出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫(huà)出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.9、A【解析】
由題意,根據(jù)雙曲線的對(duì)稱(chēng)性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.10、B【解析】
為彎管,為6個(gè)座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對(duì)的圓心角,再利用弧長(zhǎng)公式即可求解.【詳解】如圖所示,為彎管,為6個(gè)座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長(zhǎng)所以是最接近的,其中選項(xiàng)A的長(zhǎng)度比還小,不可能,因此只能選B,260或者由,所以弧長(zhǎng).故選:B【點(diǎn)睛】本題考查了弧長(zhǎng)公式,需熟記公式,考查了學(xué)生的分析問(wèn)題的能力,屬于基礎(chǔ)題.11、B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.12、C【解析】
根據(jù)函數(shù)的對(duì)稱(chēng)性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對(duì)稱(chēng)性和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由三個(gè)年級(jí)人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級(jí)共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設(shè)高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級(jí)被抽取的人數(shù)為人.故答案為:.【點(diǎn)睛】本題考查分層抽樣問(wèn)題的求解,涉及到等差數(shù)列的相關(guān)知識(shí),屬于基礎(chǔ)題.14、【解析】
通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.15、【解析】
利用展開(kāi)式各項(xiàng)系數(shù)之和求得的值,由此寫(xiě)出展開(kāi)式的通項(xiàng),令指數(shù)為零求得參數(shù)的值,代入通項(xiàng)計(jì)算即可得解.【詳解】的展開(kāi)式各項(xiàng)系數(shù)和為,得,所以,的展開(kāi)式通項(xiàng)為,令,得,因此,展開(kāi)式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中常數(shù)項(xiàng)的計(jì)算,涉及二項(xiàng)展開(kāi)式中各項(xiàng)系數(shù)和的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、2【解析】
變換得到,展開(kāi)式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開(kāi)式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)();(2)證明見(jiàn)解析.【解析】
(1)設(shè)點(diǎn),分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡(jiǎn)即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點(diǎn),,,表示出直線,取,得,即可證明直線過(guò)軸上的定點(diǎn).【詳解】(1)設(shè),由已知,∴,∴(),化簡(jiǎn)得點(diǎn)的軌跡的方程為:();(2)由(1)知,過(guò)點(diǎn)的直線的斜率為0時(shí)與無(wú)交點(diǎn),不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過(guò)軸上的定點(diǎn).【點(diǎn)睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點(diǎn)問(wèn)題,考查學(xué)生的計(jì)算能力,屬于中檔題.18、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.19、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.20、(1);(2)見(jiàn)解析.【解析】
(1)代入得,分類(lèi)討論,解不等式即可;(2)利用絕對(duì)值不等式得性質(zhì),,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對(duì)于,可得.又,由于,所以.又由于,于是.所以.【點(diǎn)睛】本題考查了絕對(duì)值不等式得求解和恒成立問(wèn)題,考查了學(xué)生分類(lèi)討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.21、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個(gè);當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿(mǎn)足的正整數(shù)對(duì)即可.【詳解】解:(1)三個(gè)數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類(lèi)計(jì)數(shù)原理得:為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項(xiàng)共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計(jì)算公式能得到:,時(shí),應(yīng)滿(mǎn)足,,共個(gè),時(shí),應(yīng)滿(mǎn)足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設(shè),則由于為正整數(shù)知必為正整數(shù),,,化簡(jiǎn)上式關(guān)系式可以知道:,均為偶數(shù),設(shè),則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗(yàn):符合題意,共有個(gè),綜上所述:共有個(gè)數(shù)對(duì)符合題意.【點(diǎn)睛】本題主要考查了排列組合的基本方法,同時(shí)也考查了組合數(shù)的運(yùn)算以及整數(shù)的分析方法等,需要根據(jù)題意22、(1)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見(jiàn)解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計(jì)算出的觀測(cè)值,對(duì)照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶(hù)外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶(hù)外作業(yè)”所包含的基本事件數(shù),利用古典概型的概
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡(luò)安全咨詢(xún)與管理服務(wù)合同范本
- 2025版電子信息產(chǎn)業(yè)零配件綠色供應(yīng)鏈管理合同4篇
- 2025年度互聯(lián)網(wǎng)金融服務(wù)合同6篇
- 年度水解彈性蛋白產(chǎn)業(yè)分析報(bào)告
- 年度皮膚科醫(yī)院市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 2024-2025學(xué)年新教材高中政治第3單元經(jīng)濟(jì)全球化第7課第1框開(kāi)放是當(dāng)代中國(guó)的鮮明標(biāo)識(shí)課時(shí)分層作業(yè)含解析新人教版選擇性必修1
- 何謂二零二五年度合同履行的擔(dān)保專(zhuān)項(xiàng)審計(jì)與報(bào)告合同3篇
- 二零二五版毛竹山承包及竹林農(nóng)業(yè)科技示范合同3篇
- 速寫(xiě)線性課程設(shè)計(jì)
- 2024金融服務(wù)合同范本大全
- 河南省信陽(yáng)市浉河區(qū)9校聯(lián)考2024-2025學(xué)年八年級(jí)上學(xué)期12月月考地理試題(含答案)
- 火災(zāi)安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書(shū)
- 快速康復(fù)在骨科護(hù)理中的應(yīng)用
- 國(guó)民經(jīng)濟(jì)行業(yè)分類(lèi)和代碼表(電子版)
- ICU患者外出檢查的護(hù)理
- 公司收購(gòu)設(shè)備合同范例
- 廣東省潮州市2023-2024學(xué)年高二上學(xué)期語(yǔ)文期末考試試卷(含答案)
- 2024年光伏發(fā)電項(xiàng)目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書(shū)
- 氧化還原反應(yīng)配平專(zhuān)項(xiàng)訓(xùn)練
評(píng)論
0/150
提交評(píng)論