版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北武漢市華中師大一附中2024屆高考數(shù)學(xué)試題原創(chuàng)模擬卷(二)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.2.已知雙曲線的右焦點(diǎn)為,若雙曲線的一條漸近線的傾斜角為,且點(diǎn)到該漸近線的距離為,則雙曲線的實(shí)軸的長(zhǎng)為A. B.C. D.3.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分開(kāi)來(lái),每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類產(chǎn)品或者檢測(cè)出3件類產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為()A. B. C. D.4.已知集合A={x|x<1},B={x|},則A. B.C. D.5.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.6.已知集合,,則()A. B.C. D.7.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.8.已知向量,,若,則()A. B. C.-8 D.89.點(diǎn)在曲線上,過(guò)作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.310.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.11.某個(gè)命題與自然數(shù)有關(guān),且已證得“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”.現(xiàn)已知當(dāng)時(shí),該命題不成立,那么()A.當(dāng)時(shí),該命題不成立 B.當(dāng)時(shí),該命題成立C.當(dāng)時(shí),該命題不成立 D.當(dāng)時(shí),該命題成立12.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.14.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為_(kāi)_____.15.設(shè),則_____,(的值為_(kāi)_____.16.已知實(shí)數(shù),滿足,則的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,且.(1)證明:;(2)若的面積,,求角.18.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒(méi)有零點(diǎn);(2)在上恒成立,求的取值范圍.19.(12分)已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.20.(12分)如圖,在正四棱柱中,,,過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長(zhǎng).21.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實(shí)數(shù)的最大值.22.(10分)如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).(1)若平面,證明:平面.(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【題目點(diǎn)撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.2、B【解題分析】
雙曲線的漸近線方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線的距離為,解得,所以,解得,所以雙曲線的實(shí)軸的長(zhǎng)為,故選B.3、D【解題分析】
根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類產(chǎn)品的概率,即可得解.【題目詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測(cè)出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類產(chǎn)品的概率為;故第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為;故選:D.【題目點(diǎn)撥】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.4、A【解題分析】∵集合∴∵集合∴,故選A5、C【解題分析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【題目詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【題目點(diǎn)撥】本題考查古典概型的概率的求法,涉及實(shí)際問(wèn)題中組合數(shù)的應(yīng)用.6、C【解題分析】
求出集合,計(jì)算出和,即可得出結(jié)論.【題目詳解】,,,.故選:C.【題目點(diǎn)撥】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.7、D【解題分析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【題目詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【題目點(diǎn)撥】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.8、B【解題分析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【題目詳解】由向量,,則,,又,則,解得.故選:B【題目點(diǎn)撥】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.9、C【解題分析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【題目詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【題目點(diǎn)撥】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問(wèn)題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.10、C【解題分析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【題目詳解】解:,得,則向量在上的投影為.故選:C.【題目點(diǎn)撥】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.11、C【解題分析】
寫出命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【題目詳解】由逆否命題可知,命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題為“假設(shè)當(dāng)時(shí)該命題不成立,則當(dāng)時(shí)該命題也不成立”,由于當(dāng)時(shí),該命題不成立,則當(dāng)時(shí),該命題也不成立,故選:C.【題目點(diǎn)撥】本題考查逆否命題與原命題等價(jià)性的應(yīng)用,解題時(shí)要寫出原命題的逆否命題,結(jié)合逆否命題的等價(jià)性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.12、C【解題分析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【題目詳解】設(shè)函數(shù),,因?yàn)椋?,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【題目點(diǎn)撥】本題考查不等式的解法和應(yīng)用問(wèn)題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】由已知中的三視圖可得該幾何體是一個(gè)以直角梯形為底面,梯形上下邊長(zhǎng)為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點(diǎn)睛:在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要從三個(gè)視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見(jiàn)輪廓線在三視圖中為實(shí)線,不可見(jiàn)輪廓線在三視圖中為虛線.在還原空間幾何體實(shí)際形狀時(shí),一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.14、【解題分析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.15、7201【解題分析】
利用二項(xiàng)展開(kāi)式的通式可求出;令中的,得兩個(gè)式子,代入可得結(jié)果.【題目詳解】利用二項(xiàng)式系數(shù)公式,,故,,故(=,故答案為:720;1.【題目點(diǎn)撥】本題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.16、【解題分析】
畫出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【題目詳解】不等式組表示的平面區(qū)域如下所示:因?yàn)榭梢岳斫鉃辄c(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),斜率取得最大值,故的最大值為.故答案為:.【題目點(diǎn)撥】本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問(wèn)題,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解題分析】
(1)利用余弦定理化簡(jiǎn)已知條件,由此證得(2)利用正弦定理化簡(jiǎn)(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【題目詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【題目點(diǎn)撥】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.18、(1)證明見(jiàn)解析(2)【解題分析】
(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒(méi)有零點(diǎn);(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【題目詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時(shí),,,這時(shí),又函數(shù)是奇函數(shù),所以當(dāng)時(shí),.綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒(méi)有零點(diǎn).(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時(shí),,又,所以當(dāng)時(shí),,滿足題意;當(dāng)時(shí),有,與條件矛盾,舍去;當(dāng)時(shí),令,則,又,故在區(qū)間上有無(wú)窮多個(gè)零點(diǎn),設(shè)最小的零點(diǎn)為,則當(dāng)時(shí),,因此在上單調(diào)遞增.,所以.于是,當(dāng)時(shí),,得,與條件矛盾.故的取值范圍是.【題目點(diǎn)撥】本題主要考查導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.19、(1);(2)【解題分析】
(1)當(dāng)時(shí),由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時(shí),不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【題目詳解】(1)由題意,當(dāng)時(shí),由,可得,令,則只需,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;故當(dāng)時(shí),取得最小值,即的最大值為.(2)依題意,當(dāng)時(shí),不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實(shí)數(shù)的取值范圍是.【題目點(diǎn)撥】本題主要考查了含絕對(duì)值的不等式的解法,以及不等式的恒成立問(wèn)題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【解題分析】
(1)由平面與平面沒(méi)有交點(diǎn),可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點(diǎn),從而得出是的中點(diǎn),可得.【題目詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒(méi)有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因?yàn)?,兩點(diǎn)不在棱的端點(diǎn)處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),若四邊形為菱形,則,易證,所以,即為的中點(diǎn),因此,且,所以是的中位線,則是的中點(diǎn),所以.【題目點(diǎn)撥】本題考查了立體幾何中的線線平行和垂直的判定問(wèn)題,和線段長(zhǎng)的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.21、(1)見(jiàn)解析;(2)最大值為.【解題分析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,進(jìn)而可得出實(shí)數(shù)的最大值.【題目詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度數(shù)據(jù)中心機(jī)房設(shè)備安裝工程一切險(xiǎn)保險(xiǎn)協(xié)議3篇
- 專屬2024房產(chǎn)中介代理協(xié)議范例版B版
- 2025年度高新技術(shù)產(chǎn)業(yè)園區(qū)廠房租賃管理協(xié)議范本4篇
- 2025年度柴油運(yùn)輸合同涉及多式聯(lián)運(yùn)及無(wú)縫銜接4篇
- 專業(yè)服務(wù)協(xié)議草案(2024年修訂版)版B版
- 2025年度茶葉產(chǎn)業(yè)鏈金融服務(wù)合作協(xié)議8篇
- 2025年度城市綠道場(chǎng)地平整與生態(tài)景觀合同4篇
- 2025年度廠房建筑安全防護(hù)設(shè)施承包合同4篇
- 2025年度高科技產(chǎn)業(yè)員工勞動(dòng)合同范本4篇
- 2025年度廠房裝修項(xiàng)目進(jìn)度管理與支付協(xié)議4篇
- 2023年浙江省公務(wù)員考試面試真題解析
- GB/T 5796.3-2022梯形螺紋第3部分:基本尺寸
- GB/T 16407-2006聲學(xué)醫(yī)用體外壓力脈沖碎石機(jī)的聲場(chǎng)特性和測(cè)量
- 簡(jiǎn)潔藍(lán)色科技商業(yè)PPT模板
- 錢素云先進(jìn)事跡學(xué)習(xí)心得體會(huì)
- 道路客運(yùn)車輛安全檢查表
- 宋曉峰辣目洋子小品《來(lái)啦老妹兒》劇本臺(tái)詞手稿
- 附錄C(資料性)消防安全評(píng)估記錄表示例
- 噪音檢測(cè)記錄表
- 推薦系統(tǒng)之協(xié)同過(guò)濾算法
- 提高筒倉(cāng)滑模施工混凝土外觀質(zhì)量QC成果PPT
評(píng)論
0/150
提交評(píng)論