版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省葉縣2024屆第二學期期末統(tǒng)一考試(數(shù)學試題理)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.62.執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.43.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.34.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-25.已知三棱柱的所有棱長均相等,側棱平面,過作平面與平行,設平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關系為()A. B.C. D.6.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.7.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線8.如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.9.函數(shù)的大致圖象是()A. B.C. D.10.若不等式在區(qū)間內的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.12.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.14.設,滿足約束條件,若的最大值是10,則________.15.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.16.已知數(shù)列中,為其前項和,,,則_________,_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.18.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.19.(12分)如圖,已知橢圓經過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.20.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.21.(12分)數(shù)列滿足,,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數(shù)m、k,均有.22.(10分)已知函數(shù),其中,.(1)當時,求的值;(2)當?shù)淖钚≌芷跒闀r,求在上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【題目詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【題目點撥】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.2、C【解題分析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.3、C【解題分析】
建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【題目詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【題目點撥】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.4、C【解題分析】
利用通項公式找到的系數(shù),令其等于-10即可.【題目詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【題目點撥】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.5、B【解題分析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【題目詳解】如圖,,設為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【題目點撥】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).6、D【解題分析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【題目詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【題目點撥】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.7、C【解題分析】
根據(jù)條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【題目詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【題目點撥】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關鍵.8、D【解題分析】
根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【題目詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【題目點撥】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.9、A【解題分析】
用排除B,C;用排除;可得正確答案.【題目詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【題目點撥】本題考查了函數(shù)圖象,屬基礎題.10、C【解題分析】
由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調性,根據(jù)在區(qū)間內的解集中有且僅有三個整數(shù),轉化為在區(qū)間內的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【題目詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內的解集中僅有三個整數(shù),只需,,所以.故選:C.【題目點撥】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.11、A【解題分析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【題目詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【題目點撥】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.12、A【解題分析】
設所求切線的方程為,聯(lián)立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【題目詳解】設所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【題目點撥】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
求出所有可能,找出符合可能的情況,代入概率計算公式.【題目詳解】解:甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為.【題目點撥】本題考查古典概型及其概率計算公式,屬于基礎題14、【解題分析】
畫出不等式組表示的平面區(qū)域,數(shù)形結合即可容易求得結果.【題目詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉化為與直線平行,數(shù)形結合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【題目點撥】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎題.15、【解題分析】
作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【題目詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【題目點撥】此題考查求空間三角形邊長的最值,關鍵在于根據(jù)幾何性質找出對稱關系,結合解三角形知識求解.16、8(寫為也得分)【解題分析】
由,得,.當時,,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解題分析】
(Ⅰ)由曲線的參數(shù)方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數(shù)的性質求出面積的取值范圍;【題目詳解】解:(Ⅰ)由(為參數(shù))化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【題目點撥】本題考查曲線的極坐標方程的求法,考查三角形的面積的求法,考查參數(shù)方程、直角坐標方程、極坐標方程的互化等基礎知識,考查運算求解能力,屬于中檔題.18、(1)(2)詳見解析【解題分析】
(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【題目詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【題目點撥】數(shù)列的通項與前項和的關系式,我們常利用這個關系式實現(xiàn)與之間的相互轉化.數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.19、(1);(2)詳見解析.【解題分析】
(1)由橢圓離心率、系數(shù)關系和已知點坐標構建方程組,求得,代入標準方程中即可;(2)依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,,通過聯(lián)立直線方程與橢圓方程化簡整理和中點的坐標表示用含k的表達式表示,,進而表示;由韋達定理表示根與系數(shù)的關系進而表示用含k的表達式表示,最后做比即得證.【題目詳解】(1)設橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標準方程為.(2)證明:依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【題目點撥】本題考查由離心率求橢圓的標準方程,還考查了橢圓中的定值問題,屬于較難題.20、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解題分析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數(shù)量積為0,轉化為:.求解即可.【題目詳解】解:(1)設橢圓的焦半距為c,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年智能防盜門安裝與系統(tǒng)集成服務協(xié)議3篇
- 2024技術支持協(xié)議書范本
- 2024版聘用合同勞動合同
- 2025年度苯板銷售與產業(yè)鏈整合合同2篇
- 二零二五年度環(huán)保型廣告車租賃服務協(xié)議6篇
- 2024延期支付科研經費合同協(xié)議書3篇
- 2024昆明市二手房買賣合同及其空氣質量保證協(xié)議
- 二零二五年金融衍生品交易合同公證協(xié)議3篇
- 二零二五年度賓館客房租賃合同解除協(xié)議2篇
- 武漢信息傳播職業(yè)技術學院《空間數(shù)據(jù)庫》2023-2024學年第一學期期末試卷
- 常用靜脈藥物溶媒的選擇
- 當代西方文學理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學
- 2024年預制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國高端私人會所市場競爭格局及投資經營管理分析報告
- GA/T 1003-2024銀行自助服務亭技術規(guī)范
- 《消防設備操作使用》培訓
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 2024年度跨境電商平臺運營與孵化合同
- 2024年電動汽車充電消費者研究報告-2024-11-新能源
- 湖北省黃岡高級中學2025屆物理高一第一學期期末考試試題含解析
- 上海市徐匯中學2025屆物理高一第一學期期末學業(yè)水平測試試題含解析
評論
0/150
提交評論