2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題_第1頁(yè)
2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題_第2頁(yè)
2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題_第3頁(yè)
2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題_第4頁(yè)
2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆安徽省蕪湖市無(wú)為縣開城中學(xué)高三1月調(diào)研測(cè)試數(shù)學(xué)試題文試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.112.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.3.已知,,由程序框圖輸出的為()A.1 B.0 C. D.4.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.7.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.8.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.9.在中,,,,為的外心,若,,,則()A. B. C. D.10.羽毛球混合雙打比賽每隊(duì)由一男一女兩名運(yùn)動(dòng)員組成.某班級(jí)從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊(duì)進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊(duì)參加比賽的概率為()A. B. C. D.11.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.912.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.15.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的最小值為________.16.若,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.18.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項(xiàng)和;(2)已知數(shù)列滿足:(?。?duì)任意的;(ⅱ)對(duì)任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.19.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.20.(12分)在中,內(nèi)角的對(duì)邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長(zhǎng).21.(12分)唐詩(shī)是中國(guó)文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩(shī)分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩(shī)分成7大類別,并從《全唐詩(shī)》48900多篇唐詩(shī)中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個(gè)類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭(zhēng)山水田園交游送別羈旅思鄉(xiāng)其他總計(jì)篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩(shī)》含“山”字的唐詩(shī)中隨機(jī)抽取一篇,則它屬于哪個(gè)類別的可能性最大,屬于哪個(gè)類別的可能性最小,并分別估計(jì)該唐詩(shī)屬于這兩個(gè)類別的概率;(2)已知檢索關(guān)鍵字的選取規(guī)則為:①若有超過(guò)95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;②若“某字”被選為“某類別”關(guān)鍵字,則由其對(duì)應(yīng)列聯(lián)表得到的的觀測(cè)值越大,排名就越靠前;設(shè)“山”“簾”“花”和“愛情婚姻”對(duì)應(yīng)的觀測(cè)值分別為,,.已知,,請(qǐng)完成下面列聯(lián)表,并從上述三個(gè)字中選出“愛情婚姻”類別的關(guān)鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計(jì)含“花”字的篇數(shù)不含“花”的篇數(shù)總計(jì)附:,其中.0.050.0250.0103.8415.0246.63522.(10分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),若直線過(guò)點(diǎn),求此時(shí)直線與直線的斜率之積;(Ⅱ)當(dāng),且時(shí),求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

根據(jù)題意計(jì)算,,,解不等式得到答案.【題目詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【題目點(diǎn)撥】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.2、B【解題分析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.3、D【解題分析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.4、B【解題分析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過(guò),再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【題目詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線過(guò)定點(diǎn),當(dāng)時(shí),不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【題目點(diǎn)撥】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問(wèn)題,分類討論與數(shù)形結(jié)合思想,屬于中檔題5、A【解題分析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).6、B【解題分析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.7、B【解題分析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【題目詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切?,所?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【題目點(diǎn)撥】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、常考題型.8、C【解題分析】

結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【題目詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【題目點(diǎn)撥】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.9、B【解題分析】

首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【題目詳解】如圖所示過(guò)做三角形三邊的垂線,垂足分別為,,,過(guò)分別做,的平行線,,由題知,則外接圓半徑,因?yàn)?,所以,又因?yàn)?,所以,,由題可知,所以,,所以.故選:D.【題目點(diǎn)撥】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.10、B【解題分析】

根據(jù)組合知識(shí),計(jì)算出選出的人分成兩隊(duì)混合雙打的總數(shù)為,然后計(jì)算和分在一組的數(shù)目為,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【題目詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊(duì)混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【題目點(diǎn)撥】本題考查排列組合的綜合應(yīng)用,對(duì)平均分組的問(wèn)題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計(jì)算,考驗(yàn)分析能力,屬中檔題.11、D【解題分析】

根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【題目詳解】∵是定義是上的奇函數(shù),滿足,,可得,

函數(shù)的周期為3,

∵當(dāng)時(shí),,

令,則,解得或1,

又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數(shù)是周期為3的周期函數(shù),

∴方程=0在區(qū)間上的解有共9個(gè),

故選D.【題目點(diǎn)撥】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、B【解題分析】

試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問(wèn)題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常??紤]用拋物線的定義進(jìn)行問(wèn)題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用交集定義直接求解.【題目詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【題目點(diǎn)撥】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、2【解題分析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【題目詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【題目點(diǎn)撥】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、40【解題分析】

設(shè)等比數(shù)列的公比為,根據(jù),可得,因?yàn)?,根?jù)均值不等式,即可求得答案.【題目詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項(xiàng)為正數(shù),,,當(dāng)且僅當(dāng),即時(shí),取得最小值.故答案為:.【題目點(diǎn)撥】本題主要考查了求數(shù)列值的最值問(wèn)題,解題關(guān)鍵是掌握等比數(shù)列通項(xiàng)公式和靈活使用均值不等式,考查了分析能力和計(jì)算能力,屬于中檔題.16、8【解題分析】

根據(jù),利用基本不等式可求得函數(shù)最值.【題目詳解】,,當(dāng)且僅當(dāng)且,即時(shí),等號(hào)成立.時(shí),取得最小值.故答案為:【題目點(diǎn)撥】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),表示圓心為,半徑為的圓;(2)【解題分析】

(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【題目詳解】(1),即,化簡(jiǎn)得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【題目點(diǎn)撥】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18、(1);(2)①;②證明見解析.【解題分析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項(xiàng)公式、求和公式,即可得到所求;(2)①若,可令,運(yùn)用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當(dāng),,,由等比數(shù)列的定義和不等式的性質(zhì),化簡(jiǎn)變形,即可得到所求結(jié)論.【題目詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項(xiàng)為,公差為的等差數(shù)列,可得,前項(xiàng)和為;(2)①若,可令,,且,即,,,,對(duì)任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對(duì)任意的,,,,,當(dāng),,,可得,即以為首項(xiàng)、為公比的等比數(shù)列;同理可得以為首項(xiàng)、為公比的等比數(shù)列;對(duì)任意的,,可得,即有,所以對(duì),,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項(xiàng),為公比的等比數(shù)列,其中.【題目點(diǎn)撥】本題考查新定義的理解和運(yùn)用,考查等差數(shù)列和等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查分類討論思想方法和推理、運(yùn)算能力,屬于難題.19、(1)見解析(2)【解題分析】

(1)取中點(diǎn),連接,,通過(guò)證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【題目詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【題目點(diǎn)撥】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問(wèn)題時(shí),常建立空間直角坐標(biāo)系,通過(guò)求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問(wèn)題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.20、(1).(2)【解題分析】

(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【題目詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【題目點(diǎn)撥】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.21、(1)該唐詩(shī)屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最??;屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為(2)填表見解析;選擇“花”,“簾”作為“愛情婚姻”類別的關(guān)鍵字,且排序?yàn)椤盎ā?,“簾”【解題分析】

(1)根據(jù)統(tǒng)計(jì)圖表

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論