




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖北省當(dāng)陽(yáng)市第一中學(xué)高三人教B版選修2-2網(wǎng)課(導(dǎo)數(shù)及其應(yīng)用)測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則不等式的解集為()A. B. C. D.2.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿(mǎn)足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.3.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.4.已知雙曲線()的漸近線方程為,則()A. B. C. D.5.是虛數(shù)單位,則()A.1 B.2 C. D.6.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.7.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或8.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.9.某地區(qū)教育主管部門(mén)為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫(huà)出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)?,?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.160010.的展開(kāi)式中,含項(xiàng)的系數(shù)為()A. B. C. D.11.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過(guò)△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心12.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集為_(kāi)_______14.已知在等差數(shù)列中,,,前n項(xiàng)和為,則________.15.設(shè),滿(mǎn)足約束條件,若的最大值是10,則________.16.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.18.(12分)已知數(shù)列,其前項(xiàng)和為,若對(duì)于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿(mǎn)足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.19.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.20.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.21.(12分)如圖,在四邊形中,,,.(1)求的長(zhǎng);(2)若的面積為6,求的值.22.(10分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意,有,求實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【題目詳解】由題得函數(shù)的定義域?yàn)?因?yàn)椋詾樯系呐己瘮?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【題目點(diǎn)撥】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.2、C【解題分析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱(chēng).
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C3、A【解題分析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.4、A【解題分析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【題目詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【題目點(diǎn)撥】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、C【解題分析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【題目詳解】由.故選:C.【題目點(diǎn)撥】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.6、C【解題分析】
將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【題目詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【題目點(diǎn)撥】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.7、C【解題分析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿(mǎn)足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.8、A【解題分析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【題目詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【題目點(diǎn)撥】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.9、B【解題分析】
由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【題目詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【題目點(diǎn)撥】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.10、B【解題分析】
在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【題目詳解】的展開(kāi)式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【題目點(diǎn)撥】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.11、A【解題分析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【題目詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【題目點(diǎn)撥】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.12、C【解題分析】
如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【題目詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【題目點(diǎn)撥】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
通過(guò)平方,將無(wú)理不等式化為有理不等式求解即可?!绢}目詳解】由得,解得,所以解集是?!绢}目點(diǎn)撥】本題主要考查無(wú)理不等式的解法。14、39【解題分析】
設(shè)等差數(shù)列公差為d,首項(xiàng)為,再利用基本量法列式求解公差與首項(xiàng),進(jìn)而求得即可.【題目詳解】設(shè)等差數(shù)列公差為d,首項(xiàng)為,根據(jù)題意可得,解得,所以.故答案為:39【題目點(diǎn)撥】本題考查等差數(shù)列的基本量計(jì)算以及前n項(xiàng)和的公式,屬于基礎(chǔ)題.15、【解題分析】
畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【題目詳解】畫(huà)出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn),取得最大值,故可得,解得.故答案為:.【題目點(diǎn)撥】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.16、【解題分析】
由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【題目詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【題目點(diǎn)撥】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析.(2)【解題分析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【題目詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)椋?,解得所以點(diǎn),到平面的距離為【題目點(diǎn)撥】本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來(lái)求,屬于中檔題18、(1)證明見(jiàn)解析;(2).【解題分析】
(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來(lái),根據(jù)是一個(gè)整數(shù),可得結(jié)果.【題目詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個(gè)整數(shù),∴,從而又當(dāng)時(shí),有,綜上,的最小值為.【題目點(diǎn)撥】本題主要考查由遞推關(guān)系得通項(xiàng)公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,屬于難題.19、(1)(2)【解題分析】
(1)利用降次公式、輔助角公式化簡(jiǎn)解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【題目詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因?yàn)榍覟殇J角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【題目點(diǎn)撥】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解題分析】
(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【題目詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【題目點(diǎn)撥】本題考查線段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.21、(1)(2)【解題分析】
(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【題目詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園管理制度300字
- 融資平臺(tái)投資管理制度
- 作業(yè)本發(fā)放管理制度
- 魚(yú)塘釣魚(yú)規(guī)章管理制度
- 食品管理制度培訓(xùn)記錄
- 服裝公司5s管理制度
- iqa數(shù)據(jù)管理制度
- 頂級(jí)酒店衛(wèi)生管理制度
- 食品公司加工管理制度
- 集團(tuán)新建項(xiàng)目管理制度
- 2023氣管插管意外拔管的不良事件分析及改進(jìn)措施
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹(shù)脂耐腐蝕立式貯罐
- 個(gè)人養(yǎng)老金涉稅政策
- (初級(jí))心理治療師歷年考試真題匯總整理(含答案)
- 平行四邊形的判定-說(shuō)課課件(二)
- 電磁閥的原理與結(jié)構(gòu)
- 審計(jì)報(bào)告XX(中國(guó))能源審計(jì)報(bào)告
- 典范英語(yǔ)2b課文電子書(shū)
- 部編初中語(yǔ)文培訓(xùn):部編語(yǔ)文教材解讀及自讀課文和語(yǔ)文知識(shí)教學(xué)建議教學(xué)課件
- 2022新能源區(qū)域集控中心建設(shè)技術(shù)規(guī)范
- DBJ41T 074-2013 高壓細(xì)水霧滅火系統(tǒng)設(shè)計(jì)、施工及驗(yàn)收規(guī)范
評(píng)論
0/150
提交評(píng)論