




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省湘西自治州四校2024屆高三下學(xué)期第十二周周測(cè)(1)數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)2.設(shè)是虛數(shù)單位,則()A. B. C. D.3.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱(chēng)號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱(chēng)為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.4.己知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,點(diǎn)分別在拋物線(xiàn)上,且,直線(xiàn)交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.65.若的展開(kāi)式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.36.已知函數(shù)是奇函數(shù),且,若對(duì),恒成立,則的取值范圍是()A. B. C. D.7.曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,則()A. B. C.4 D.88.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿(mǎn)分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等9.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面相互垂直;③垂直于同一直線(xiàn)的兩條直線(xiàn)相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④10.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.40011.已知雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.12.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長(zhǎng)為1,若向量、、滿(mǎn)足,則實(shí)數(shù)的值為_(kāi)______.14.已知雙曲線(xiàn)的兩條漸近線(xiàn)方程為,若頂點(diǎn)到漸近線(xiàn)的距離為1,則雙曲線(xiàn)方程為.15.如圖,為測(cè)量出高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得.已知山高,則山高_(dá)_________.16.已知雙曲線(xiàn)的右準(zhǔn)線(xiàn)與漸近線(xiàn)的交點(diǎn)在拋物線(xiàn)上,則實(shí)數(shù)的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣的一個(gè)特征值為4,求矩陣A的逆矩陣.18.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線(xiàn)的極坐標(biāo)方程;(2)在曲線(xiàn)上取一點(diǎn),直線(xiàn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線(xiàn)于點(diǎn),求的最大值.19.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線(xiàn)與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.20.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達(dá)式,并證明你的結(jié)論.21.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線(xiàn)段上靠近的三等分點(diǎn).(1)求證:;(2)求直線(xiàn)與平面所成角的正弦值.22.(10分)在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(1)求直線(xiàn)與曲線(xiàn)的普通方程,并求出直線(xiàn)的傾斜角;(2)記直線(xiàn)與軸的交點(diǎn)為是曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
利用終邊相同的角的公式判斷即得正確答案.【題目詳解】與的終邊相同的角可以寫(xiě)成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【題目點(diǎn)撥】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.2、A【解題分析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【題目詳解】由復(fù)數(shù)的乘法法則得.故選:A.【題目點(diǎn)撥】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.3、B【解題分析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【題目詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱(chēng)軸方程為,所以,,所以,所以的值域?yàn)?故選:B【題目點(diǎn)撥】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類(lèi)討論和應(yīng)用意識(shí).4、D【解題分析】
作,垂足為,過(guò)點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線(xiàn)段的中點(diǎn),即可求出到的距離.【題目詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過(guò)點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線(xiàn)段的中點(diǎn),所以F到l的距離為.故選:D【題目點(diǎn)撥】本題主要考查拋物線(xiàn)的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.5、C【解題分析】
先研究的展開(kāi)式的通項(xiàng),再分中,取和兩種情況求解.【題目詳解】因?yàn)榈恼归_(kāi)式的通項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:,解得,故選:C.【題目點(diǎn)撥】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.6、A【解題分析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【題目詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)椋?,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對(duì)恒成立,則,對(duì)恒成立,,得,所以的取值范圍是.故選:A.【題目點(diǎn)撥】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.7、B【解題分析】
求函數(shù)導(dǎo)數(shù),利用切線(xiàn)斜率求出,根據(jù)切線(xiàn)過(guò)點(diǎn)求出即可.【題目詳解】因?yàn)?,所以,故,解得,又切線(xiàn)過(guò)點(diǎn),所以,解得,所以,故選:B【題目點(diǎn)撥】本題主要考查了導(dǎo)數(shù)的幾何意義,切線(xiàn)方程,屬于中檔題.8、B【解題分析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【題目詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【題目點(diǎn)撥】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.9、D【解題分析】
利用線(xiàn)面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對(duì)四個(gè)命題分別分析進(jìn)行選擇.【題目詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線(xiàn)也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線(xiàn)的兩條直線(xiàn)還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線(xiàn)垂直的直線(xiàn)才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【題目點(diǎn)撥】本題考查命題真假的判斷,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.10、B【解題分析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【題目詳解】設(shè)公差為,,,,.故選:B.【題目點(diǎn)撥】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.11、A【解題分析】
根據(jù)雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線(xiàn)的漸近線(xiàn)方程.【題目詳解】解:由雙曲線(xiàn)可知,焦點(diǎn)在軸上,則雙曲線(xiàn)的漸近線(xiàn)方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線(xiàn)的漸近線(xiàn)方程為:.故選:A.【題目點(diǎn)撥】本題考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),以及雙曲線(xiàn)的漸近線(xiàn)方程.12、D【解題分析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【題目詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍得到的圖像.故選:D【題目點(diǎn)撥】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【題目詳解】由圖可知:,所以,又因?yàn)椋?,所?故答案為:.【題目點(diǎn)撥】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.14、【解題分析】由已知,即,取雙曲線(xiàn)頂點(diǎn)及漸近線(xiàn),則頂點(diǎn)到該漸近線(xiàn)的距離為,由題可知,所以,則所求雙曲線(xiàn)方程為.15、1【解題分析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.16、【解題分析】
求出雙曲線(xiàn)的漸近線(xiàn)方程,右準(zhǔn)線(xiàn)方程,得到交點(diǎn)坐標(biāo)代入拋物線(xiàn)方程求解即可.【題目詳解】解:雙曲線(xiàn)的右準(zhǔn)線(xiàn),漸近線(xiàn),雙曲線(xiàn)的右準(zhǔn)線(xiàn)與漸近線(xiàn)的交點(diǎn),交點(diǎn)在拋物線(xiàn)上,可得:,解得.故答案為.【題目點(diǎn)撥】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)以及拋物線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,是基本知識(shí)的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、.【解題分析】
根據(jù)特征多項(xiàng)式可得,可得,進(jìn)而可得矩陣A的逆矩陣.【題目詳解】因?yàn)榫仃嚨奶卣鞫囗?xiàng)式,所以,所以.因?yàn)?,且,所?【題目點(diǎn)撥】本題考查矩陣的特征多項(xiàng)式以及逆矩陣的求解,是基礎(chǔ)題.18、(1)(2)最大值為【解題分析】
(1)利用消去參數(shù),求得曲線(xiàn)的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程.(2)設(shè)出兩點(diǎn)的坐標(biāo),求得的表達(dá)式,并利用三角恒等變換進(jìn)行化簡(jiǎn),再結(jié)合三角函數(shù)最值的求法,求得的最大值.【題目詳解】(1)由消去得曲線(xiàn)的普通方程為.所以的極坐標(biāo)方程為,即.(2)不妨設(shè),,,,,則當(dāng)時(shí),取得最大值,最大值為.【題目點(diǎn)撥】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,考查極坐標(biāo)系下線(xiàn)段長(zhǎng)度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.19、(1)①當(dāng)時(shí),在單調(diào)遞增,②當(dāng)時(shí),單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見(jiàn)解析【解題分析】
(1)先求解導(dǎo)函數(shù),然后對(duì)參數(shù)分類(lèi)討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【題目詳解】(1),①當(dāng)時(shí),恒成立,則在單調(diào)遞增②當(dāng)時(shí),令得,解得,又,∴∴當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒(méi)有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【題目點(diǎn)撥】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對(duì)于含參函數(shù)單調(diào)性的分析,可通過(guò)分析參數(shù)的臨界值,由此分類(lèi)討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.20、,;,證明見(jiàn)解析【解題分析】
對(duì)函數(shù)進(jìn)行求導(dǎo),并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對(duì)函數(shù)再進(jìn)行求導(dǎo)并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【題目詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學(xué)歸納法證明:①當(dāng)時(shí),成立,②假設(shè)時(shí),猜想成立即當(dāng)時(shí),當(dāng)時(shí),猜想成立由①②對(duì)成立【題目點(diǎn)撥】本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.21、(1)證明見(jiàn)解析(2)【解題分析】
(1)由,故,所以四邊形為菱形,再通過(guò),證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線(xiàn)面角的向量法公式求解.【題目詳解】(1)因?yàn)?,故,所以四邊形為菱形,而平面,?因?yàn)?,故,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線(xiàn)分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)椋?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)?,設(shè)直線(xiàn)與平面所成角為,則,所以直線(xiàn)與平面所成角的正弦值為.【題目點(diǎn)撥】本題考查
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 買(mǎi)賣(mài)公雞廣告合同范本
- 中醫(yī)門(mén)診合同范本
- 2025中國(guó)冶金地質(zhì)總局所屬在京單位高校畢業(yè)生招聘23人筆試參考題庫(kù)附帶答案詳解
- 修車(chē)廠(chǎng)勞務(wù)合同范本
- 個(gè)體服裝購(gòu)銷(xiāo)合同范本6
- 產(chǎn)品合伙合同范本
- 代購(gòu)分期購(gòu)車(chē)合同范本
- Starter Unit 3 Section B project 教學(xué)設(shè)計(jì)- 2024-2025學(xué)年人教版七年級(jí)英語(yǔ)上冊(cè)
- 企業(yè)食堂用工合同范本
- 勞務(wù)搬家合同范本
- 政府審計(jì) 課件 第二章 政府審計(jì)組織與審計(jì)法律
- 1.1青春的邀約 教學(xué)課件 2024-2025學(xué)年七年級(jí)道德與法治下冊(cè)(統(tǒng)編版2024)
- 2024年財(cái)政部會(huì)計(jì)法律法規(guī)答題活動(dòng)題目及答案一
- 2024年01月廣州期貨交易所2024年招考筆試歷年參考題庫(kù)附帶答案詳解
- 中小學(xué)教師家訪(fǎng)記錄表內(nèi)容(18張)8
- 2024員工質(zhì)量意識(shí)培訓(xùn)
- 《冠心病》課件(完整版)
- 2024年聊城職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 五年級(jí)美術(shù)下冊(cè)全冊(cè)教材分析
- 第五章:毒物泄漏及擴(kuò)散模型-第四次
- 接收證明-轉(zhuǎn)學(xué)證明2頁(yè)
評(píng)論
0/150
提交評(píng)論