河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷_第1頁
河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷_第2頁
河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷_第3頁
河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷_第4頁
河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省鹿泉一中2024屆高三第二學期聯(lián)合教學質量調研數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記遞增數列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數列中的項,則()A. B.C. D.2.已知與函數和都相切,則不等式組所確定的平面區(qū)域在內的面積為()A. B. C. D.3.若,則實數的大小關系為()A. B. C. D.4.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.5.已知集合,則()A. B.C. D.6.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.7.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40408.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln29.一個組合體的三視圖如圖所示(圖中網格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.10.中國古代數學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里11.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.12.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數據的標準差為_____.14.利用等面積法可以推導出在邊長為a的正三角形內任意一點到三邊的距離之和為定值,類比上述結論,利用等體積法進行推導,在棱長為a的正四面體內任意一點到四個面的距離之和也為定值,則這個定值是______15.若函數為偶函數,則________.16.如果函數(,且,)在區(qū)間上單調遞減,那么的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,它的導函數為.(1)當時,求的零點;(2)當時,證明:.18.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.19.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.20.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數方程:(為參數),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.21.(12分)設函數,().(1)若曲線在點處的切線方程為,求實數a、m的值;(2)若對任意恒成立,求實數a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.22.(10分)已知的內角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【題目詳解】解:,或其積,或其商仍是該數列中的項,或者或者是該數列中的項,又數列是遞增數列,,,,只有是該數列中的項,同理可以得到,,,也是該數列中的項,且有,,或(舍,,根據,,,同理易得,,,,,,,故選:D.【題目點撥】本題考查數列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.2、B【解題分析】

根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【題目詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【題目點撥】本小題主要考查根據公共切線求參數,考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.3、A【解題分析】

將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【題目詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【題目點撥】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大??;若真數相同,則結合對數函數的圖像或者換底公式可判斷大小;若真數和底數都不相同,則可與中間值如1,0比較大小.4、A【解題分析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.5、B【解題分析】

先由得或,再計算即可.【題目詳解】由得或,,,又,.故選:B【題目點撥】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.6、B【解題分析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【題目詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【題目點撥】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.7、D【解題分析】

計算,代入等式,根據化簡得到答案.【題目詳解】,,,故,,故.故選:.【題目點撥】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.8、B【解題分析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【題目詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【題目點撥】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.9、C【解題分析】

根據組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【題目點撥】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據幾何體的結構求出其體積.10、B【解題分析】

人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,計算,代入得到答案.【題目詳解】由題意可知此人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【題目點撥】本題考查了等比數列的應用,意在考查學生的計算能力和應用能力.11、D【解題分析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【題目詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【題目點撥】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.12、B【解題分析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【題目詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【題目點撥】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先計算平均數再求解方差與標準差即可.【題目詳解】解:樣本的平均數,這組數據的方差是標準差,故答案為:【題目點撥】本題主要考查了標準差的計算,屬于基礎題.14、【解題分析】

計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結果.【題目詳解】作平面,為的重心如圖則,所以設正四面體內任意一點到四個面的距離之和為則故答案為:【題目點撥】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎題.15、【解題分析】

二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【題目詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5【題目點撥】本題考查由奇偶性求解參數,求函數值,屬于基礎題16、18【解題分析】

根據函數單調性的性質,分一次函數和一元二次函數的對稱性和單調區(qū)間的關系建立不等式,利用基本不等式求解即可.【題目詳解】解:①當時,,在區(qū)間上單調遞減,則,即,則.②當時,,函數開口向上,對稱軸為,因為在區(qū)間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【題目點撥】本題主要考查一次函數與二次函數的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解題分析】

當時,求函數的導數,判斷導函數的單調性,計算即為導函數的零點;

當時,分類討論x的范圍,可令新函數,計算新函數的最值可證明.【題目詳解】(1)的定義域為當時,,,易知為上的增函數,又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【題目點撥】本題主要考查導數法研究函數的單調性,單調性,零點的求法.注意分類討論和構造新函數求函數的最值的應用.18、(1)見解析(2)【解題分析】分析:(1)根據面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應用常規(guī)法,作出線面角,放在三角形當中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據勾股定理得∠ADB=90°∴AD⊥BD.又因為DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因為BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點,,,,設,則,,則.,則,即CF與平面ABCD所成角的正弦值為.(Ⅱ)方法二:可知DA、DB、DE兩兩垂直,以D為原點,建立如圖所示的空間直角坐標系D-xyz.設DE=h,則D(0,0,0),B(0,,0),C(-,-,h).,.設平面BCF的法向量為m=(x,y,z),則所以取x=,所以m=(,-1,-),取平面BDEF的法向量為n=(1,0,0),由,解得,則,又,則,設CF與平面ABCD所成角為,則sin=.故直線CF與平面ABCD所成角的正弦值為點睛:該題考查的是立體幾何的有關問題,涉及到的知識點有面面垂直的判定,線面角的正弦值,在求解的過程中,需要把握面面垂直的判定定理的內容,要明白垂直關系直角的轉化,在求線面角的有關量的時候,有兩種方法,可以應用常規(guī)法,也可以應用向量法.19、(1)(2)最大值.【解題分析】

(1)根據通徑和即可求(2)設直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【題目詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.【題目點撥】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.20、(1);(2)10【解題分析】

(1)消去參數,可得曲線C的普通方程,再根據極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用根與系數的關系,求得,進而得到=,結合三角函數的性質,即可求解.【題目詳解】(1)由題意,曲線C的參數方程為,消去參數,可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標方程為.(2)將代入,得,即,所以=,其中,當時,取最大值,最大值為10.【題目點撥】本題主要考查了參數方程與普通方程,極坐標方程與直角坐標方程的互化,以及曲線的極坐標方程的應用,著重考查了運算與求解能力,屬于中檔試題.21、(1),;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論