版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省洞口二中招生全國統(tǒng)一考試模擬調(diào)研卷(五)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.122.若,則下列不等式不能成立的是()A. B. C. D.3.已知為拋物線的準(zhǔn)線,拋物線上的點到的距離為,點的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.4.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.5.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或6.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.7.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行9.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.10.函數(shù)的值域為()A. B. C. D.11.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.12.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.14.已知集合,,則____________.15.在中,內(nèi)角所對的邊分別是,若,,則__________.16.在長方體中,,,,為的中點,則點到平面的距離是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.18.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.19.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設(shè)為的中點,為上的動點(不與重合)求二面角的正切值的最小值20.(12分)已知函數(shù).(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)設(shè)函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當(dāng)時,設(shè)的最小值為,若恒成立,求實數(shù)t的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【題目詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【題目點撥】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.2、B【解題分析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【題目詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【題目點撥】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.3、B【解題分析】
設(shè)拋物線焦點為,由題意利用拋物線的定義可得,當(dāng)共線時,取得最小值,由此求得答案.【題目詳解】解:拋物線焦點,準(zhǔn)線,過作交于點,連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點共線時,取“=”號,∴的最小值為.
故選:B.【題目點撥】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.4、D【解題分析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【題目詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【題目點撥】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎(chǔ)題.5、D【解題分析】
由正弦定理可求得,再由角A的范圍可求得角A.【題目詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【題目點撥】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.6、A【解題分析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【題目詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【題目點撥】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于中檔題.7、B【解題分析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【題目詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【題目點撥】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.8、B【解題分析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【題目詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【題目點撥】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.9、B【解題分析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【題目詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【題目點撥】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.10、A【解題分析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【題目詳解】,,,因此,函數(shù)的值域為.故選:A.【題目點撥】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.11、C【解題分析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【題目詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【題目點撥】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.12、C【解題分析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【題目詳解】解:因為所以所以所以所以所以當(dāng)時,為直角三角形;當(dāng)時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【題目點撥】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【題目詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【題目點撥】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運算求解的能力,屬于難題.14、【解題分析】
由于,,則.15、【解題分析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【題目詳解】由于,所以,所以.由正弦定理得.故答案為:【題目點撥】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.16、【解題分析】
利用等體積法求解點到平面的距離【題目詳解】由題在長方體中,,,所以,所以,設(shè)點到平面的距離為,解得故答案為:【題目點撥】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達(dá)定理與求解,進(jìn)而利用弦長公式求解即可.【題目詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因為,所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【題目點撥】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應(yīng)用.屬于基礎(chǔ)題.18、(1)(2)【解題分析】
(1)先證得,設(shè)與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)由題意,,設(shè)與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【題目點撥】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)見解析(2)【解題分析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標(biāo)原點,建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時,正切值求得最小值;【題目詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標(biāo)原點,建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個法向量為設(shè)平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時取得最大值,最大值為,則最小值為【題目點撥】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.20、(Ⅰ)見解析(Ⅱ)【解題分析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實數(shù)的取值范圍即可.【題目詳解】解:(Ⅰ)當(dāng)時,,當(dāng)時,在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時,由得:;由得:.∴當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時,,即又∵,∴實數(shù)的取值范圍是:.【題目點撥】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,屬于中等題.21、(1)(2)證明見解析【解題分析】
(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進(jìn)而利用基本不等式得證.【題目詳解】(1),當(dāng)且僅當(dāng)“”時取等號,故的最小值為;(2),當(dāng)且僅當(dāng)時取等號,此時.故.【題目點撥】本題主要考查基本不等式的運用,屬于基礎(chǔ)題.22、(1)的增區(qū)間為,減區(qū)間為;(2).【解題分析】
(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對導(dǎo)數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【題目詳解】解:(1)解:,當(dāng)時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省南充市西充中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試語文試題(含答案)
- 三治三提活動剖析整改方案范例(3篇)
- 專業(yè)技術(shù)培訓(xùn)的目標(biāo)與意義考核試卷
- 信息系統(tǒng)安全培訓(xùn)與教育考核試卷
- 棒球場地坪漆施工協(xié)議
- 畜牧業(yè)內(nèi)勤招聘協(xié)議
- 神經(jīng)外科護(hù)士雇傭協(xié)議樣本
- 生態(tài)農(nóng)業(yè)園區(qū)道路改造合同樣本
- 個人快遞物流配送用車租賃協(xié)議
- 燃?xì)夤艿理椖空袠?biāo)法律實務(wù)
- 好書推薦——《三毛流浪記》PPT通用課件
- DM1204-B調(diào)音臺
- 鋁基合金高溫相變儲熱材料
- 干膜介紹及干膜工藝詳解實力干貨
- 《跨文化交際》課程教學(xué)大綱(英語師范專業(yè))
- 在“家庭醫(yī)生簽約服務(wù)”工作推進(jìn)會上的發(fā)言稿
- 火力發(fā)電廠生產(chǎn)過程-ppt課件
- 領(lǐng)導(dǎo)在思想作風(fēng)紀(jì)律總結(jié)大會講話
- 課題初中數(shù)學(xué)作業(yè)優(yōu)化設(shè)計的研究研究報告
- 《固容規(guī)》壓力容器產(chǎn)品質(zhì)量證明書..
評論
0/150
提交評論