2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題_第1頁
2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題_第2頁
2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題_第3頁
2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題_第4頁
2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省育能高級中學高三高考模擬沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.2.關于函數(shù)在區(qū)間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減3.設向量,滿足,,,則的取值范圍是A. B.C. D.4.展開項中的常數(shù)項為A.1 B.11 C.-19 D.515.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件6.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.7.已知定義在上的奇函數(shù),其導函數(shù)為,當時,恒有.則不等式的解集為().A. B.C.或 D.或8.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則9.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.10.已知復數(shù)滿足,且,則()A.3 B. C. D.11.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或12.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若在定義域內(nèi)恒有,則實數(shù)的取值范圍是__________.14.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.15.拋物線的焦點坐標為______.16.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.18.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.19.(12分)已知函數(shù)的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).20.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.21.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.22.(10分)設函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調性求得再根據(jù)此范圍求的最小值.【題目詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【題目點撥】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質等基礎知識,考查數(shù)學運算求解能力和分類討論思想,是中等題.2、C【解題分析】

先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【題目詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【題目點撥】本題考查三角函數(shù)的平移與單調性的求解.屬于基礎題.3、B【解題分析】

由模長公式求解即可.【題目詳解】,當時取等號,所以本題答案為B.【題目點撥】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.4、B【解題分析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【題目詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【題目點撥】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.5、B【解題分析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題6、C【解題分析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.7、D【解題分析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【題目詳解】構造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【題目點撥】此題考查根據(jù)導函數(shù)構造原函數(shù),偶函數(shù)解不等式等知識點,屬于較難題目.8、D【解題分析】試題分析:,,故選D.考點:點線面的位置關系.9、B【解題分析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【題目詳解】當時,的展開式中的系數(shù)為.當,時,系數(shù)為;當,時,系數(shù)為;當,時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【題目點撥】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.10、C【解題分析】

設,則,利用和求得,即可.【題目詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【題目點撥】本題考查復數(shù)的乘法法則的應用,考查共軛復數(shù)的應用.11、A【解題分析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【題目詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:

①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.

故選:A.【題目點撥】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數(shù)形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.12、C【解題分析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內(nèi)角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉化為恒成立問題,湊而可知的圖象在過原點且與兩函數(shù)相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結合分母不為零的條件可最終確定的取值范圍.【題目詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點且與兩函數(shù)相切的兩條切線之間.設過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數(shù)的取值范圍為.【題目點撥】本題考查恒成立問題的求解,重點考查了導數(shù)幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.14、1【解題分析】

由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【題目詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【題目點撥】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.15、【解題分析】

變換得到,計算焦點得到答案.【題目詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【題目點撥】本題考查了拋物線的焦點坐標,屬于簡單題.16、91【解題分析】

設共有選票張,且票對應張數(shù)為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【題目詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【題目點撥】本題考查線性規(guī)劃的實際應用問題,關鍵是能夠根據(jù)已知條件構造出變量所滿足的關系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解題分析】

(1)根據(jù)題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【題目詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【題目點撥】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.18、(1)(為參數(shù)),;(2)【解題分析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方程變形盡量產(chǎn)生以便轉化.19、(1);(2)見解析.【解題分析】

(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計算出的取值范圍,據(jù)此列表、描點、連線可得出函數(shù)在區(qū)間上的圖象.【題目詳解】(1)因為函數(shù)的最小正周期是,所以.又因為當時,函數(shù)取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【題目點撥】本題考查正弦函數(shù)解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.20、(Ⅰ);(Ⅱ);(Ⅲ).【解題分析】

(Ⅰ)由已知結合正弦定理先進行代換,然后結合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結合三角形的面積公式可求;(Ⅲ)結合二倍角公式及和角余弦公式即可求解.【題目詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【題目點撥】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應用,意在考查學生對這些知識的理解掌握水平.21、(Ⅰ)(Ⅱ)見證明【解題分析】

(Ⅰ)求導得,由是減函數(shù)得,對任意的,都有恒成立,構造函數(shù),通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構造函數(shù),,通過求導證明即可.【題目詳解】解:(Ⅰ)的定義域為,.由是減函數(shù)得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論