版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省樂山十校高2024屆高三二??荚嚁?shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.2.若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.104.已知數(shù)列的前項(xiàng)和為,且,,則()A. B. C. D.5.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.27.已知函數(shù),則()A. B. C. D.8.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.209.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-210.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.11.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8512.對于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的一個(gè)頂點(diǎn)是圓柱上底面的圓心,另外三個(gè)頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.14.如圖是一個(gè)幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.15.已知隨機(jī)變量,且,則______16.已知函數(shù)的定義域?yàn)镽,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.18.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.19.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.20.(12分)已知橢圓:的長半軸長為,點(diǎn)(為橢圓的離心率)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,為直線上任一點(diǎn),過點(diǎn)橢圓上點(diǎn)處的切線為,,切點(diǎn)分別,,直線與直線,分別交于,兩點(diǎn),點(diǎn),的縱坐標(biāo)分別為,,求的值.21.(12分)某商場舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?22.(10分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由實(shí)部為求得值.【題目詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在虛軸上,,即.故選D.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.2、B【解題分析】
復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【題目詳解】,由其在復(fù)平面對應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、C【解題分析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【題目詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【題目點(diǎn)撥】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.4、C【解題分析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項(xiàng)公式,由此求得.【題目詳解】由于,所以數(shù)列是等比數(shù)列,其首項(xiàng)為,第二項(xiàng)為,所以公比為.所以,所以.故選:C【題目點(diǎn)撥】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項(xiàng)公式,屬于基礎(chǔ)題.5、B【解題分析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【題目詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【題目點(diǎn)撥】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.6、A【解題分析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【題目詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)?,所以為線段的中點(diǎn),所以,,整理得,故該雙曲線的離心率.故選:.【題目點(diǎn)撥】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、A【解題分析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【題目詳解】依題意,.故選:A【題目點(diǎn)撥】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.8、C【解題分析】
利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【題目詳解】令,則,,∴,,∴.【題目點(diǎn)撥】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題9、B【解題分析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【題目詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【題目點(diǎn)撥】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.10、D【解題分析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.11、D【解題分析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項(xiàng)和公比,根據(jù)等比數(shù)列的前n項(xiàng)和公式解答即可.【題目詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【題目點(diǎn)撥】本題主要考查等比數(shù)列的前n項(xiàng)和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、A【解題分析】
由已知可得的單調(diào)性,再由可得對稱性,可求出在單調(diào)性,即可求出結(jié)論.【題目詳解】對于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【題目點(diǎn)撥】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè)正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【題目詳解】解:設(shè)正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【題目點(diǎn)撥】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計(jì)算能力,屬于中檔題.14、;【解題分析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長,表面積是考點(diǎn):1.三視圖;2.幾何體的表面積.15、0.1【解題分析】
根據(jù)原則,可得,簡單計(jì)算,可得結(jié)果.【題目詳解】由題可知:隨機(jī)變量,則期望為所以故答案為:【題目點(diǎn)撥】本題考查正態(tài)分布的計(jì)算,掌握正態(tài)曲線的圖形以及計(jì)算,屬基礎(chǔ)題.16、【解題分析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【題目詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【題目點(diǎn)撥】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【題目詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫?,所以,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【題目點(diǎn)撥】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、【解題分析】
原不等式等價(jià)于在恒成立,令,,求出在上的最小值后可得的取值范圍.【題目詳解】因?yàn)樵跁r(shí)恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【題目點(diǎn)撥】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.19、(1)見解析;(2)證明見解析.【解題分析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【題目詳解】(1)的定義域?yàn)楫?dāng)時(shí),,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時(shí),,①若,則,所以成立,②若,設(shè),則,令,則,因?yàn)?,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【題目點(diǎn)撥】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.20、(1);(2).【解題分析】
(1)因?yàn)辄c(diǎn)在橢圓上,所以,然后,利用,,得出,進(jìn)而求解即可(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達(dá)定理,再利用,,即可求出的值【題目詳解】(1)由橢圓的長半軸長為,得.因?yàn)辄c(diǎn)在橢圓上,所以.又因?yàn)?,,所以,所以(舍)?故橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【題目點(diǎn)撥】本題考查橢圓標(biāo)準(zhǔn)方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關(guān)鍵在于利用韋達(dá)定理進(jìn)行消參,屬于中檔題21、(1)(2)選擇方案二更為劃算【解題分析】
(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【題目詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 圖書加盟合同協(xié)議樣本
- 抵押合同終止與注銷指南
- 商品進(jìn)口交易服務(wù)合同書范本
- 2024年反擔(dān)保合同樣書一
- 婚前協(xié)議注意事項(xiàng)
- 公司車輛租賃合同書
- 2024年辦公樓物業(yè)管理簡單合同范本
- 離婚協(xié)議書的樣本范本2024年
- 個(gè)人貸款委托協(xié)議范本
- 重癥肌無力護(hù)理查房
- 2024-2030年國內(nèi)染發(fā)劑行業(yè)市場發(fā)展分析及發(fā)展前景與投資機(jī)會(huì)研究報(bào)告
- GB 30253-2024永磁同步電動(dòng)機(jī)能效限定值及能效等級
- 2024年代客泊車協(xié)議書模板范本
- 第十三屆全國黃金行業(yè)職業(yè)技能競賽(首飾設(shè)計(jì)師賽項(xiàng))考試題及答案
- 2018年注冊稅務(wù)師考試稅法(一)真題
- 2024-2030年中國置物架行業(yè)市場運(yùn)行分析及商業(yè)模式與投融資戰(zhàn)略研究報(bào)告
- 核聚變制氫技術(shù)的創(chuàng)新與應(yīng)用
- (初級)船舶氣割工技能鑒定考試題庫(含答案)
- 黑龍江省進(jìn)城務(wù)工人員隨遷子女參加高考報(bào)名資格審查表
- 【核心素養(yǎng)目標(biāo)】人教版《勞動(dòng)教育》七上 勞動(dòng)項(xiàng)目二《插花》課件
- 公共衛(wèi)生與預(yù)防醫(yī)學(xué)繼續(xù)教育平臺“大學(xué)習(xí)”活動(dòng)線上培訓(xùn)欄目題及答案
評論
0/150
提交評論