四川省樂山十校高2024屆高三二??荚嚁?shù)學試題_第1頁
四川省樂山十校高2024屆高三二??荚嚁?shù)學試題_第2頁
四川省樂山十校高2024屆高三二??荚嚁?shù)學試題_第3頁
四川省樂山十校高2024屆高三二??荚嚁?shù)學試題_第4頁
四川省樂山十校高2024屆高三二模考試數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省樂山十校高2024屆高三二??荚嚁?shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)為虛數(shù)單位在復平面內(nèi)所對應的點在虛軸上,則實數(shù)a為()A. B.2 C. D.2.若復數(shù)在復平面內(nèi)對應的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.3.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.104.已知數(shù)列的前項和為,且,,則()A. B. C. D.5.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.27.已知函數(shù),則()A. B. C. D.8.已知是等差數(shù)列的前項和,若,,則()A.5 B.10 C.15 D.209.已知定義在上的奇函數(shù)滿足,且當時,,則()A.1 B.-1 C.2 D.-210.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.11.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8512.對于任意,函數(shù)滿足,且當時,函數(shù).若,則大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.14.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.15.已知隨機變量,且,則______16.已知函數(shù)的定義域為R,導函數(shù)為,若,且,則滿足的x的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.18.(12分)若不等式在時恒成立,則的取值范圍是__________.19.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.20.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.21.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?22.(10分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【題目詳解】解:在復平面內(nèi)所對應的點在虛軸上,,即.故選D.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.2、B【解題分析】

復數(shù),在復平面內(nèi)對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【題目詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【題目點撥】本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.3、C【解題分析】

取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【題目詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【題目點撥】此題考查三棱錐的外接球半徑與棱長的關系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.4、C【解題分析】

根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【題目詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【題目點撥】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.5、B【解題分析】

根據(jù)誘導公式化簡再分析即可.【題目詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【題目點撥】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.6、A【解題分析】

設,直線的方程為,聯(lián)立方程得到,,根據(jù)向量關系化簡到,得到離心率.【題目詳解】設,直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【題目點撥】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉化能力.7、A【解題分析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【題目詳解】依題意,.故選:A【題目點撥】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎題.8、C【解題分析】

利用等差通項,設出和,然后,直接求解即可【題目詳解】令,則,,∴,,∴.【題目點撥】本題考查等差數(shù)列的求和問題,屬于基礎題9、B【解題分析】

根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【題目詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質可得;∴;∴時,;∴.故選:B.【題目點撥】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.10、D【解題分析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.11、D【解題分析】

由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【題目詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【題目點撥】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.12、A【解題分析】

由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【題目詳解】對于任意,函數(shù)滿足,因為函數(shù)關于點對稱,當時,是單調增函數(shù),所以在定義域上是單調增函數(shù).因為,所以,.故選:A.【題目點撥】本題考查利用函數(shù)性質比較函數(shù)值的大小,解題的關鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【題目詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【題目點撥】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.14、;【解題分析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.15、0.1【解題分析】

根據(jù)原則,可得,簡單計算,可得結果.【題目詳解】由題可知:隨機變量,則期望為所以故答案為:【題目點撥】本題考查正態(tài)分布的計算,掌握正態(tài)曲線的圖形以及計算,屬基礎題.16、【解題分析】

構造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【題目詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【題目點撥】本題考查函數(shù)奇偶性、單調性以及利用函數(shù)性質解不等式,考查綜合分析求解能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【題目詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.【題目點撥】本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、【解題分析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【題目詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【題目點撥】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎題.19、(1)見解析;(2)證明見解析.【解題分析】

當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調性,計算即為導函數(shù)的零點;

當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【題目詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【題目點撥】本題主要考查導數(shù)法研究函數(shù)的單調性,單調性,零點的求法.注意分類討論和構造新函數(shù)求函數(shù)的最值的應用.20、(1);(2).【解題分析】

(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,,即可求出的值【題目詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【題目點撥】本題考查橢圓標準方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題21、(1)(2)選擇方案二更為劃算【解題分析】

(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【題目詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論