版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省湘南高三5月聯(lián)合調(diào)研數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象大致是()A. B.C. D.2.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.23.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.265.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.66.若復(fù)數(shù)滿足,則()A. B. C. D.7.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知數(shù)列的前項(xiàng)和為,且,,,則的通項(xiàng)公式()A. B. C. D.9.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.10.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.11.已知,,若,則向量在向量方向的投影為()A. B. C. D.12.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是九位評委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_______.14.在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為________.15.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.16.已知數(shù)列滿足對任意,,則數(shù)列的通項(xiàng)公式__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63518.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.19.(12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),其短半軸長為1,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個(gè)交點(diǎn)為,當(dāng)?shù)拿娣e最小時(shí),求的長.20.(12分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點(diǎn),AC,BD交于點(diǎn)O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.21.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長交直線于,兩點(diǎn),已知,求證:直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).22.(10分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【題目詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【題目點(diǎn)撥】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.2、D【解題分析】
根據(jù)拋物線的定義求得,由此求得的長.【題目詳解】過作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【題目點(diǎn)撥】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、D【解題分析】
先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【題目詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限故選:D【題目點(diǎn)撥】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.4、D【解題分析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【題目詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【題目點(diǎn)撥】本題考查組合的應(yīng)用,此類問題注意實(shí)際問題的合理轉(zhuǎn)化,本題屬于容易題.5、A【解題分析】
由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【題目點(diǎn)撥】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.6、B【解題分析】
由題意得,,求解即可.【題目詳解】因?yàn)?所以.故選:B.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.7、D【解題分析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【題目詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【題目點(diǎn)撥】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識(shí)的理解掌握水平.8、C【解題分析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【題目詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【題目點(diǎn)撥】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識(shí).9、C【解題分析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【題目詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【題目點(diǎn)撥】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.10、A【解題分析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【題目詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【題目點(diǎn)撥】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.11、B【解題分析】
由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【題目詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【題目點(diǎn)撥】本題考查向量投影的幾何意義,屬于基礎(chǔ)題12、B【解題分析】
利用復(fù)數(shù)乘法運(yùn)算化簡,由此求得.【題目詳解】依題意,所以.故選:B【題目點(diǎn)撥】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
寫出莖葉圖對應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【題目詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.【題目點(diǎn)撥】本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.14、【解題分析】
解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【題目詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【題目點(diǎn)撥】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.15、【解題分析】
根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對數(shù)式的化簡即可求解.【題目詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【題目點(diǎn)撥】本題考查了等差數(shù)列通項(xiàng)公式的簡單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對數(shù)式的化簡運(yùn)算,屬于中檔題.16、【解題分析】
利用累加法求得數(shù)列的通項(xiàng)公式,由此求得的通項(xiàng)公式.【題目詳解】由題,所以故答案為:【題目點(diǎn)撥】本小題主要考查累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)無關(guān);(2),.【解題分析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計(jì)男301545女451055合計(jì)7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得.因?yàn)?.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=18、(1)2;(2)見解析【解題分析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【題目詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【題目點(diǎn)撥】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡計(jì)算能力.19、(1)見解析;(2).【解題分析】
(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【題目詳解】(1)由題意,橢圓的焦點(diǎn)在x軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時(shí),,,于是,到的距離為1,直線與圓相切.當(dāng)?shù)男甭什粸?時(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.此時(shí),點(diǎn)在橢圓的長軸端點(diǎn),為.不妨設(shè)為長軸左端點(diǎn),則直線的方程為,代入橢圓的方程解得,即,,所以.【題目點(diǎn)撥】本題考查了直線和橢圓綜合,考查了直線和圓的位置關(guān)系判斷,面積的最值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算能力,屬于較難題.20、(1)證明見解析(2)【解題分析】
(1)連接OE,利用三角形中位線定理得到OE∥PC,即可證出OE∥平面PBC;(2)由E是PA的中點(diǎn),,求出S△ABD,即可求解.【題目詳解】(1)證明:如圖所示:∵點(diǎn)O,E分別是AC,PA的中點(diǎn),∴OE是△PAC的中位線,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD為菱形,∠BAD=60°,∴S△ABD,∴三棱錐E﹣PBD的體積.【題目點(diǎn)撥】本題考查空間線、面位置關(guān)系,證明直線與平面平行以及求三棱錐的體積,注意等體積法的應(yīng)用,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.21、(1)(2)證明見解析;定點(diǎn)坐標(biāo)為【解題分析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【題目詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時(shí)滿足∴∴直線恒過定點(diǎn)【題目點(diǎn)撥】涉及橢圓的弦長、中點(diǎn)、距離等相關(guān)問題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.22、(1)極大值,極小值;(2)詳見解析.【解題分析】
首先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具設(shè)計(jì)師童心未泯創(chuàng)意無限
- 文化創(chuàng)意技術(shù)工作總結(jié)
- 整形外科護(hù)士全年工作總結(jié)
- 證券行業(yè)衛(wèi)生規(guī)范
- 《愛勞動(dòng)講衛(wèi)生》課件
- 2021年高考語文試卷(上海)(春考)(解析卷)
- 2024年濮陽職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 2024年美術(shù)的教案
- 農(nóng)村房屋問題協(xié)議書(2篇)
- 出境游全程無憂旅游合同
- 網(wǎng)絡(luò)加速器提供商服務(wù)合同
- 2024版新能源汽車充電站電線電纜采購合同2篇
- 轉(zhuǎn)讓押金協(xié)議合同范例
- 國家藥包材檢驗(yàn)標(biāo)準(zhǔn)培訓(xùn)
- 腫瘤科危急重癥護(hù)理
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級(jí)英語期末模擬試卷(一)(含答案)
- 2024-2030年中國加速器行業(yè)發(fā)展趨勢及運(yùn)營模式分析報(bào)告版
- 護(hù)理查房深靜脈置管
- 運(yùn)動(dòng)障礙護(hù)理查房
- 計(jì)算與人工智能概論知到智慧樹章節(jié)測試課后答案2024年秋湖南大學(xué)
- 2024年度油漆涂料生產(chǎn)線租賃合同3篇
評論
0/150
提交評論