版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年黑龍江省七臺河市數(shù)學(xué)九上期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,正方形ABCD和正方形CGFE的頂點(diǎn)C,D,E在同一條直線上,頂點(diǎn)B,C,G在同一條直線上.O是EG的中點(diǎn),∠EGC的平分線GH過點(diǎn)D,交BE于點(diǎn)H,連接FH交EG于點(diǎn)M,連接OH.以下四個結(jié)論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結(jié)論是()A.①②③ B.①②④ C.①③④ D.②③④2.將二次函數(shù)y=2x2+2的圖象先向左平移3個單位長度,再向下平移1個單位長度后所得新函數(shù)圖象的表達(dá)式為()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+13.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.1π﹣ B.1π﹣9 C.12π﹣ D.4.九(1)班的教室里正在召開50人的座談會,其中有3名教師,12名家長,35名學(xué)生,當(dāng)林校長走到教室門口時,聽到里面有人在發(fā)言,那么發(fā)言人是家長的概率為()A. B. C. D.5.如圖,拋物線與軸交于點(diǎn),其對稱軸為直線,結(jié)合圖象分析下列結(jié)論:①;②;③當(dāng)時,隨的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個根,則且,其中正確的結(jié)論有()A.個 B.個 C.個 D.個6.把拋物線的圖象繞著其頂點(diǎn)旋轉(zhuǎn),所得拋物線函數(shù)關(guān)系式是()A. B. C. D.7.如圖,點(diǎn)D是等腰直角三角形ABC內(nèi)一點(diǎn),AB=AC,若將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)到△ACE的位置,則∠AED的度數(shù)為()A.25° B.30° C.40° D.45°8.如圖,,,,四點(diǎn)都在上,,則的度數(shù)為()A. B. C. D.9.某樓盤準(zhǔn)備以每平方米16000元的均價對外銷售,由于受有關(guān)房地產(chǎn)的新政策影響,購房者持幣觀望.開發(fā)商為促進(jìn)銷售,對價格進(jìn)行了連續(xù)兩次下調(diào),結(jié)果以每平方米14440元的均價開盤銷售,則平均每次下調(diào)的百分率為()A.5% B.8% C.10% D.11%10.某商場降價銷售一批名牌襯衫,已知所獲利潤y(元)與降價x(元)之間的關(guān)系是y=-2x2+60x+800,則利潤獲得最多為()A.15元 B.400元 C.800元 D.1250元11.正方形的邊長為4,若邊長增加x,那么面積增加y,則y關(guān)于x的函數(shù)表達(dá)式為()A. B. C. D.12.參加一次聚會的每兩人都握了一次手,所有人共握手10
次,若共有
x
人參加聚會,則根據(jù)題意,可列方程()A. B. C. D.二、填空題(每題4分,共24分)13.如果x:y=1:2,那么=_____.14.如圖,在平行四邊形中,是邊上的點(diǎn),,連接,相交于點(diǎn),則_________.15.如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點(diǎn)B,OC交AB于點(diǎn)D,若CD=OD,則△AOD與△BCD的面積比為__.16.若能分解成兩個一次因式的積,則整數(shù)k=_________.17.一個正n邊形的一個外角等于72°,則n的值等于_____.18.雙曲線在每個象限內(nèi),函數(shù)值y隨x的增大而增大,則m的取值范圍是__________三、解答題(共78分)19.(8分)(1)如圖①,在△ABC中,AB=m,AC=n(n>m),點(diǎn)P在邊AC上.當(dāng)AP=時,△APB∽△ABC;(2)如圖②,已知△DEF(DE>DF),請用直尺和圓規(guī)在直線DF上求作一點(diǎn)Q,使DE是線段DF和DQ的比例項.(保留作圖痕跡,不寫作法)20.(8分)在一個不透明的盒子里裝有黑、白兩種顏色的球共50個,這些球除顏色外其余完全相同.王穎做摸球試驗,攪勻后,她從盒子里隨機(jī)摸出一個球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,如表是試驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024806001800摸到白球的頻率0.650.620.5930.6040.60.60.6(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近;(精確到0.1)(2)若從盒子里隨機(jī)摸出一個球,則摸到白球的概率的估計值為;(3)試估算盒子里黑、白兩種顏色的球各有多少個?21.(8分)如圖,點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(4,0)、(0,3),將線段BA繞點(diǎn)A沿順時針旋轉(zhuǎn)90°,設(shè)點(diǎn)B旋轉(zhuǎn)后的對應(yīng)點(diǎn)是點(diǎn)B1,求點(diǎn)B1的坐標(biāo).22.(10分)(1)已知:如圖1,為等邊三角形,點(diǎn)為邊上的一動點(diǎn)(點(diǎn)不與、重合),以為邊作等邊,連接.求證:①,②;(2)如圖2,在中,,,點(diǎn)為上的一動點(diǎn)(點(diǎn)不與、重合),以為邊作等腰,(頂點(diǎn)、、按逆時針方向排列),連接,類比題(1),請你猜想:①的度數(shù);②線段、、之間的關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,若點(diǎn)在的延長線上運(yùn)動,以為邊作等腰,(頂點(diǎn)、、按逆時針方向排列),連接.①則題(2)的結(jié)論還成立嗎?請直接寫出,不需論證;②連結(jié),若,,直接寫出的長.23.(10分)如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).(1)求證:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周長.24.(10分)用適當(dāng)?shù)姆椒ń庖辉畏匠蹋海?)x2+4x﹣12=0(2)2x2﹣4x+1=025.(12分)某小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為,,,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為,,.(1)小亮將媽媽分類好的三類垃圾隨機(jī)投入到三種垃圾箱內(nèi),請用畫樹狀圖或表格的方法表示所有可能性,并請求出小亮投放正確的概率.(2)請你就小亮投放垃圾的事件提出兩條合理化建議.26.某廣場有一個小型噴泉,水流從垂直于地面的水管OA噴出,OA長為1.5米.水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點(diǎn)B到O的距離為3米.建立平面直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關(guān)系(1)求y與x之間的函數(shù)關(guān)系式;(2)求水流噴出的最大高度.
參考答案一、選擇題(每題4分,共48分)1、A【分析】由四邊形ABCD和四邊形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,從而得GH⊥BE;由GH是∠EGC的平分線,得出△BGH≌△EGH,再由O是EG的中點(diǎn),利用中位線定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因為O為EG的中點(diǎn),所以O(shè)H=OG=OE,得出點(diǎn)H在正方形CGFE的外接圓上,根據(jù)圓周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,從而證得△EHM∽△GHF;設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長是2b,則NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,從而求得,設(shè)正方形ECGF的邊長是2b,則EG=2b,得到HO=b,通過證得△MHO∽△MFE,得到,進(jìn)而得到,進(jìn)一步得到.【詳解】解:如圖,∵四邊形ABCD和四邊形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正確;∵△EHG是直角三角形,O為EG的中點(diǎn),∴OH=OG=OE,∴點(diǎn)H在正方形CGFE的外接圓上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正確;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中點(diǎn),∴HO∥BG,∴△DHN∽△DGC,設(shè)EC和OH相交于點(diǎn)N.設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長是2b,則NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正確;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位線,∴HO=BG,∴HO=EG,設(shè)正方形ECGF的邊長是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④錯誤,故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì),以及全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),正確求得兩個三角形的邊長的比是解決本題的關(guān)鍵.2、D【分析】根據(jù)二次函數(shù)圖像的平移法則進(jìn)行推導(dǎo)即可.【詳解】解:將二次函數(shù)y=2x2+2的圖象先向左平移3個單位長度,再向下平移1個單位長度后所得新函數(shù)圖象的表達(dá)式為y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故選:D.【點(diǎn)睛】本題考查了二次函數(shù)圖像的平移,掌握并靈活運(yùn)用“上加下減,左加右減”的平移原則是解題的關(guān)鍵.3、A【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=1,CD=3,從而得到∠CDO=30°,∠COD=10°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進(jìn)行計算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=1,∴CD=,∴∠CDO=30°,∠COD=10°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=1π﹣,∴陰影部分的面積為1π﹣.故選A.【點(diǎn)睛】本題考查了扇形面積的計算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計算公式.也考查了折疊性質(zhì).4、B【解析】根據(jù)概率=頻數(shù)除以總數(shù)即可解題.【詳解】解:由題可知:發(fā)言人是家長的概率==,故選B.【點(diǎn)睛】本題考查了概率的實際應(yīng)用,屬于簡單題,熟悉概率的計算方法是解題關(guān)鍵.5、C【分析】利用二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象依次對各結(jié)論進(jìn)行判斷.【詳解】解:拋物線與軸交于點(diǎn),其對稱軸為直線拋物線與軸交于點(diǎn)和,且由圖象知:,,故結(jié)論①正確;拋物線與x軸交于點(diǎn)故結(jié)論②正確;當(dāng)時,y隨x的增大而增大;當(dāng)時,隨的增大而減小結(jié)論③錯誤;,拋物線與軸交于點(diǎn)和的兩根是和,即為:,解得,;故結(jié)論④正確;當(dāng)時,故結(jié)論⑤正確;拋物線與軸交于點(diǎn)和,,為方程的兩個根,為方程的兩個根,為函數(shù)與直線的兩個交點(diǎn)的橫坐標(biāo)結(jié)合圖象得:且故結(jié)論⑥成立;故選C.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),關(guān)鍵在于二次函數(shù)的系數(shù)所表示的意義,以及與一元二次方程的關(guān)系,這是二次函數(shù)的重點(diǎn)知識.6、B【分析】根據(jù)圖象繞頂點(diǎn)旋轉(zhuǎn)180°,可得函數(shù)圖象開口方向相反,頂點(diǎn)坐標(biāo)相同,可得答案.【詳解】∵,
∴該拋物線的頂點(diǎn)坐標(biāo)是(1,3),
∴在旋轉(zhuǎn)之后的拋物線解析式為:.
故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象的平移和旋轉(zhuǎn),解決本題的關(guān)鍵是理解繞拋物線的頂點(diǎn)旋轉(zhuǎn)180°得到新函數(shù)的二次項的系數(shù)符號改變,頂點(diǎn)不變.7、D【分析】由題意可以判斷△ADE為等腰直角三角形,即可解決問題.【詳解】解:如圖,由旋轉(zhuǎn)變換的性質(zhì)知:∠EAD=∠CAB,AE=AD;
∵△ABC為直角三角形,
∴∠CAB=90°,△ADE為等腰直角三角形,
∴∠AED=45°,
故選:D.【點(diǎn)睛】該題考查了旋轉(zhuǎn)變換的性質(zhì)及其應(yīng)用問題;應(yīng)牢固掌握旋轉(zhuǎn)變換的性質(zhì).8、C【分析】根據(jù)圓周角定理求出∠A,根據(jù)圓內(nèi)接四邊形的性質(zhì)計算即可.【詳解】由圓周角定理得,∠A=∠BOD=,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠BCD=?∠A=,故選:C.【點(diǎn)睛】本題考查了圓周角定理以及圓內(nèi)接四邊形的性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.9、A【分析】設(shè)平均每次下調(diào)的百分率為x,根據(jù)該樓盤的原價及經(jīng)過兩次降價后的價格,即可得出關(guān)于x的一元二次方程,即可得出結(jié)果.【詳解】設(shè)平均每次下調(diào)的百分率為x,依題意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合題意,舍去),答:平均每次下調(diào)的百分率為5%.故選:A.【點(diǎn)睛】本題主要考查一元二次方程的實際應(yīng)用,找出等量關(guān)系,列出關(guān)于x的方程,是解題的關(guān)鍵.10、D【分析】將函數(shù)關(guān)系式轉(zhuǎn)化為頂點(diǎn)式,然后利用開口方向和頂點(diǎn)坐標(biāo)即可求出最多的利潤.【詳解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故當(dāng)x=15時,y有最大值,最大值為1250即利潤獲得最多為1250元故選:D.【點(diǎn)睛】此題考查的是利用二次函數(shù)求最值,掌握將二次函數(shù)的一般式轉(zhuǎn)化為頂點(diǎn)式求最值是解決此題的關(guān)鍵.11、C【分析】加的面積=新正方形的面積-原正方形的面積,把相關(guān)數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【點(diǎn)睛】本題考查列二次函數(shù)關(guān)系式;得到增加的面積的等量關(guān)系是解決本題的關(guān)鍵.12、C【分析】如果人參加了這次聚會,則每個人需握手次,人共需握手次;而每兩個人都握了一次手,因此一共握手次.【詳解】設(shè)人參加了這次聚會,則每個人需握手次,依題意,可列方程.故選C.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用.二、填空題(每題4分,共24分)13、【分析】根據(jù)合比性質(zhì),可得答案.【詳解】解:,即.故答案為.【點(diǎn)睛】考查了比例的性質(zhì),利用了和比性質(zhì):.14、【分析】設(shè)△AEO的面積為a,由平行四邊形的性質(zhì)可知AE∥CD,可證△AEO∽△CDO,相似比為AE:CD=EO:DO=3:4,由相似三角形的性質(zhì)可求△CDO的面積,由等高的兩個三角形面積等于底邊之比,可求△ADO的面積,得出的值.【詳解】解:設(shè)△AEO的面積為a,∵四邊形ABCD是平行四邊形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵設(shè)△AEO的面積為a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,則S△ACD=S△ADO+S△CDO=,∴故答案為:.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是由平行線得出相似三角形,利用相似比求相似三角形的面積,等高的三角形面積.15、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設(shè)D(m,n),則C(2m,2n),再根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=4mn,則A(m,4n),然后根據(jù)三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設(shè)D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點(diǎn)睛】考核知識點(diǎn):平行線分線段成比例,反比例函數(shù);數(shù)形結(jié)合,利用平行線分線段成比例,反比例函數(shù)定義求出點(diǎn)的坐標(biāo)關(guān)系是關(guān)鍵.16、【分析】根據(jù)題意設(shè)多項式可以分解為:(x+ay+c)(2x+by+d),則2c+d=k,根據(jù)cd=6,求出所有符合條件的c、d的值,然后再代入ad+bc=0求出a、b的值,與2a+b=1聯(lián)立求出a、b的值,a、b是整數(shù)則符合,否則不符合,最后把符合條件的值代入k進(jìn)行計算即可.【詳解】解:設(shè)能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6時,ad+bc=6a+b=0,與2a+b=1聯(lián)立求解得,或c=6,d=1時,ad+bc=a+6b=0,與2a+b=1聯(lián)立求解得,②c=2,d=3時,ad+bc=3a+2b=0,與2a+b=1聯(lián)立求解得,或c=3,d=2時,ad+bc=2a+3b=0,與2a+b=1聯(lián)立求解得,③c=-2,d=-3時,ad+bc=-3a-2b=0,與2a+b=1聯(lián)立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,與2a+b=1聯(lián)立求解得,④c=-1,d=-6時,ad+bc=-6a-b=0,與2a+b=1聯(lián)立求解得,或c=-6,d=-1時,ad+bc=-a-6b=0,與2a+b=1聯(lián)立求解得,∴c=2,d=3時,c=-2,d=-3時,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整數(shù)k的值是1,-1.故答案為:.【點(diǎn)睛】本題考查因式分解的意義,設(shè)成兩個多項式的積的形式是解題的關(guān)鍵,要注意6的所有分解結(jié)果,還需要用a、b進(jìn)行驗證,注意不要漏解.17、1.【分析】可以利用多邊形的外角和定理求解.【詳解】解:∵正n邊形的一個外角為72°,∴n的值為360°÷72°=1.故答案為:1【點(diǎn)睛】本題考查了多邊形外角和,熟記多邊形的外角和等于360度是解題的關(guān)鍵.18、【分析】根據(jù)反比例函數(shù)的性質(zhì)可知,y隨x的增大而增大則k知小于0,即m-2<0,解得m的范圍即可.【詳解】∵反比例函數(shù)y隨x的增大而增大∴m-2<0則m<2【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),函數(shù)值y隨x的增大而增大則k小于0,函數(shù)值y隨x的增大而減小則k大于0.三、解答題(共78分)19、(1);(2)見解析.【分析】(1)根據(jù)相似三角形的判定方法進(jìn)行分析即可;(2)直接利用相似三角形的判定方法以及結(jié)合做一角等于已知角進(jìn)而得出答案.【詳解】(1)解:要使△APB∽△ABC成立,∠A是公共角,則,即,∴AP=.(2)解:作∠DEQ=∠F,如圖點(diǎn)Q就是所求作的點(diǎn)【點(diǎn)睛】本題考查了相似變換,正確掌握相似三角形的判定方法是解題的關(guān)鍵.20、(1)0.6;(2)0.6;(3)盒子里黑顏色的球有20只,盒子白顏色的球有30只【分析】(1)觀察表格找到逐漸穩(wěn)定到的常數(shù)即可;(2)概率接近于(1)得到的頻率;(3)白球個數(shù)=球的總數(shù)×得到的白球的概率,讓球的總數(shù)減去白球的個數(shù)即為黑球的個數(shù),問題得解.【詳解】(1)∵摸到白球的頻率約為0.6,∴當(dāng)n很大時,摸到白球的頻率將會接近0.6;故答案為:0.6;(2)∵摸到白球的頻率為0.6,∴若從盒子里隨機(jī)摸出一只球,則摸到白球的概率的估計值為0.6;(3)黑白球共有20只,白球為:50×0.6=30(只),黑球為:50﹣30=20(只).答:盒子里黑顏色的球有20只,盒子白顏色的球有30只.【點(diǎn)睛】考查利用頻率估計概率.大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點(diǎn)為:部分的具體數(shù)目=總體數(shù)目×相應(yīng)頻率.21、B1點(diǎn)的坐標(biāo)為(7,4)【分析】如圖,作B1C⊥x軸于C,證明△ABO≌△B1AC得到AC=OB=3,B1C=OA=4,然后寫出B1點(diǎn)的坐標(biāo).【詳解】如圖,作B1C⊥x軸于C.∵A(4,0)、B(0,3),∵OA=4,OB=3,∵線段BA繞點(diǎn)A沿順時針旋轉(zhuǎn)90°得AB1,∴BA=AB1,且∠BAB1=90°,∴∠BAO+∠B1AC=90°而∠BAO+∠ABO=90°,∴∠ABO=∠B1AC,∴△ABO≌△B1AC,∴AC=OB=3,B1C=OA=4,∴OC=OA+AC=7,∴B1點(diǎn)的坐標(biāo)為(7,4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.22、(1)①見解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.證明見解析;(3)①(1)中的結(jié)論還成立,②AE=.【分析】(1)①根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE,即可得出結(jié)論;②由△ABD≌△ACE,以及等邊三角形的性質(zhì),就可以得出∠DCE=110°;
(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根據(jù)勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;
(3)①運(yùn)用(1)中的方法得出BD1+CD1=DE1;②根據(jù)Rt△BCE中,BE=10,BC=6,求得進(jìn)而得出CD=8-6=1,在Rt△DCE中,求得最后根據(jù)△ADE是等腰直角三角形,即可得出AE的長.【詳解】(1)①如圖1,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.證明:如圖1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD與△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的結(jié)論還成立.
理由:如圖3,∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD與△ACE中,∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE1+CD1=DE1,
∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,
∴CD=8-6=1,
∴Rt△DCE中,∵△ADE是等腰直角三角形,【點(diǎn)睛】本題屬于三角形綜合題,主要考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理的綜合應(yīng)用,解決問題的關(guān)鍵是掌握全等三角形的對應(yīng)邊相等,對應(yīng)角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《病理學(xué)傳染病》課件
- 2024年電能表修校工(中級工)職業(yè)鑒定考試題庫(含答案)
- 耐水硅膠FNG行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025收藏品買賣合同范文
- 2024年度天津市公共營養(yǎng)師之三級營養(yǎng)師練習(xí)題及答案
- 2025清單計價規(guī)范下的工程合同
- 2024年度四川省公共營養(yǎng)師之四級營養(yǎng)師題庫附答案(典型題)
- 2024年度四川省公共營養(yǎng)師之三級營養(yǎng)師考前沖刺模擬試卷A卷含答案
- 2025合伙買車合同
- 2025年中國防腐油漆行業(yè)市場發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報告
- 國有企業(yè)考勤制度管理辦法
- 人教版六年級上冊道德與法治知識點(diǎn)
- 期貨從業(yè)資格(期貨基礎(chǔ)知識)歷年真題試卷匯編27
- 人工智能學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 北師大版(2019)必修第二冊Unit 5 Humans and nature Lesson 3 Race to the pole教學(xué)設(shè)計
- 《毛概》23版學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024CSCO胰腺癌診療指南解讀
- 窗簾采購?fù)稑?biāo)方案(技術(shù)方案)
- 電力安全工作規(guī)程考試試題(答案)
- 2024-2030年串番茄行業(yè)市場發(fā)展分析及前景趨勢與投資研究報告
- 城市燃?xì)夤芫W(wǎng)改造合同
評論
0/150
提交評論