版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省巢湖市柘皋中學(xué)2024屆高三上數(shù)學(xué)期末經(jīng)典試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-32.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i3.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.34.在中,在邊上滿足,為的中點,則().A. B. C. D.5.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.6.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.7.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.8.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.10.若點是角的終邊上一點,則()A. B. C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為虛數(shù)單位,且,則=_____.14.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.15.已知集合,,則____________.16.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標(biāo)原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.19.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).20.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.22.(10分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當(dāng)直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-22、A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、B【解析】
根據(jù)極值點處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.4、B【解析】
由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.5、A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于中檔題.6、C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).7、C【解析】
畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于??碱}.8、B【解析】
模擬程序運行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運行,觀察變量值,從而得出結(jié)論.9、D【解析】
設(shè)雙曲線的左焦點為,連接,,,設(shè),則,,,和中,利用勾股定理計算得到答案.【詳解】設(shè)雙曲線的左焦點為,連接,,,設(shè),則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.10、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【點睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡、計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.11、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.12、D【解析】
易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
解:利用復(fù)數(shù)相等,可知由有.14、【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點共線,結(jié)合向量的性質(zhì)可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.15、【解析】
由于,,則.16、【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據(jù)雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)由余弦定理及已知等式得出關(guān)系,再由正弦定理可得結(jié)論;(2)由余弦定理和已知條件解得,然后由面積公式計算.【詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因為,,所以.(2)由題意及余弦定理可知,①由得,即,②聯(lián)立①②解得,.所以.【點睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應(yīng)用余弦定理求出邊.解題時要注意對條件的分析,確定選用的公式.18、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計算能力.19、見解析【解析】
若選擇①,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當(dāng)且僅當(dāng)時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則.20、(1)見證明;(2)【解析】
(1)取的中點,連.可證得,,于是可得平面,進而可得結(jié)論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設(shè)平面的一個法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關(guān)鍵點是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關(guān)系.21、(1);(2)【解析】
(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負(fù),而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.22、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)生實習(xí)自我鑒定范文合集15篇
- 《手機充電管理分析》課件
- 外賣行業(yè)競爭策略研究-洞察分析
- 胎盤miRNA表達譜與疾病預(yù)后-洞察分析
- 鐵路機車車輛市場供需分析-洞察分析
- 遺傳物質(zhì)重塑機制及基因置換分析-洞察分析
- 循環(huán)型金屬產(chǎn)業(yè)鏈構(gòu)建-洞察分析
- 網(wǎng)絡(luò)直播演出競爭優(yōu)勢-洞察分析
- 藝術(shù)市場的價格波動-洞察分析
- 學(xué)生個體差異評價研究-洞察分析
- 2021年新疆烏魯木齊市中考化學(xué)一模試卷(附答案詳解)
- 張家爺爺?shù)男』ü?
- 高中思想政治-高三一輪復(fù)習(xí)講評課教學(xué)課件設(shè)計
- 自動噴水滅火系統(tǒng)的設(shè)計計算
- 教師評職稱個人綜述
- LSI-陣列卡操作手冊
- 漢字文化解密(華中師范大學(xué))超星爾雅學(xué)習(xí)通網(wǎng)課章節(jié)測試答案
- 黑龍江省哈爾濱市八年級上學(xué)期物理期末考試試卷及答案
- 商業(yè)綜合體設(shè)計說明書
- GB/T 19587-2017氣體吸附BET法測定固態(tài)物質(zhì)比表面積
- 比賽車門凹陷修復(fù)
評論
0/150
提交評論