2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題_第1頁
2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題_第2頁
2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題_第3頁
2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題_第4頁
2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧省凌源市教育局高三下學(xué)期第一次適應(yīng)性考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.2.國務(wù)院發(fā)布《關(guān)于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年3.“學(xué)習(xí)強國”學(xué)習(xí)平臺是由中宣部主管,以深入學(xué)習(xí)宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員?面向全社會的優(yōu)質(zhì)平臺,現(xiàn)日益成為老百姓了解國家動態(tài)?緊跟時代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰(zhàn)答題”四個答題模塊?某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.4324.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12805.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-136.已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.7.設(shè),,則的值為()A. B.C. D.8.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.已知集合,集合,則等于()A. B.C. D.10.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.111.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.12.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.14.已知x,y>0,且,則x+y的最小值為_____.15.定義在R上的函數(shù)滿足:①對任意的,都有;②當(dāng)時,,則函數(shù)的解析式可以是______________.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)(1)當(dāng)時,求不等式的解集;(2)若,求的取值范圍.18.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.19.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.20.(12分)已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和.求證:.21.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標(biāo),則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標(biāo)的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標(biāo)情況相互獨立.(1)當(dāng)時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

計算的中點坐標(biāo)為,圓半徑為,得到圓方程.【題目詳解】的中點坐標(biāo)為:,圓半徑為,圓方程為.故選:.【題目點撥】本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計算能力.2、C【解題分析】

觀察圖表,判斷四個選項是否正確.【題目詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【題目點撥】本題考查統(tǒng)計圖表,正確認(rèn)識圖表是解題基礎(chǔ).3、C【解題分析】

四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【題目詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【題目點撥】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.4、A【解題分析】

根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【題目詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【題目點撥】求二項展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).5、B【解題分析】

由題得,,解得,,計算可得.【題目詳解】,,,,解得,,.故選:B【題目點撥】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.6、A【解題分析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【題目詳解】解:,∴,設(shè),∴,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,∴,當(dāng)時,,當(dāng),,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【題目點撥】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運算能力.7、D【解題分析】

利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進而求得的值,最后利用正切差角公式求得結(jié)果.【題目詳解】,,,,,,,,故選:D.【題目點撥】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識點有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.8、A【解題分析】

根據(jù)題意得到充分性,驗證a=2,b=1【題目詳解】a,b∈0,1∪1,+∞,當(dāng)"a=b當(dāng)logab=log故選:A.【題目點撥】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.9、B【解題分析】

求出中不等式的解集確定出集合,之后求得.【題目詳解】由,所以,故選:B.【題目點撥】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.10、B【解題分析】

先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【題目詳解】解:當(dāng)時,,則;當(dāng)時,則.設(shè)為函數(shù)圖像上的兩點,當(dāng)或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時,的最大值為.則在上單調(diào)遞減,則.故選:B.【題目點撥】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點是求出和的函數(shù)關(guān)系式.本題的易錯點是計算.11、D【解題分析】

由程序框圖確定程序功能后可得出結(jié)論.【題目詳解】執(zhí)行該程序可得.故選:D.【題目點撥】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.12、B【解題分析】

根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【題目詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【題目點撥】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【題目詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.14、1【解題分析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【題目詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時取等號,此時x=4,y=2,取得最小值1.故答案為:1【題目點撥】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.15、(或,答案不唯一)【解題分析】

由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【題目詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【題目點撥】本題考查抽象函數(shù)的性質(zhì),涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.16、1【解題分析】

先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【題目詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),,時等號成立,故答案為:1.【題目點撥】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)通過討論的范圍,得到關(guān)于的不等式組,解出取并集即可.(2)去絕對值將函數(shù)寫成分段函數(shù)形式討論分段函數(shù)的單調(diào)性由恒成立求得結(jié)果.【題目詳解】解:(1)當(dāng)時,,即或或解之得或,即不等式的解集為.(2)由題意得:當(dāng)時為減函數(shù),顯然恒成立.當(dāng)時,為增函數(shù),,當(dāng)時,為減函數(shù),綜上所述:使恒成立的的取值范圍為.【題目點撥】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數(shù)問題,考查分類討論思想,轉(zhuǎn)化思想,屬于中檔題.18、(1)見解析(2)【解題分析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.19、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標(biāo)準(zhǔn)方程可求;(Ⅱ)設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關(guān)于的函數(shù)表達式,利用不等式的性質(zhì)可求得的取值范圍.【題目詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)點、,聯(lián)立消去,得,,則,,設(shè)圓的圓心到直線的距離為,則.,,,,的取值范圍為.【題目點撥】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應(yīng)用,考查計算能力,屬于中等題.20、(1)(2)證明見解析【解題分析】

(1)利用求得數(shù)列的通項公式.(2)先將縮小即,由此結(jié)合裂項求和法、放縮法,證得不等式成立.【題目詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.【題目點撥】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1);(2)不會超過預(yù)算,理由見解析【解題分析】

(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【題目詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論