版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆福建省東山縣第二中學高三高考模擬沖刺卷(提優(yōu)卷)(三)數(shù)學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.2.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,3.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.5.二項式展開式中,項的系數(shù)為()A. B. C. D.6.已知函數(shù)()的最小值為0,則()A. B. C. D.7.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.08.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.9.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.10.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.11.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.412.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且圓心在直線上的圓的半徑為__________.14.已知全集為R,集合,則___________.15.若向量與向量垂直,則______.16.已知函數(shù)有兩個極值點、,則的取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.19.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.20.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.21.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.22.(10分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結果.【題目詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【題目點撥】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法2、D【解題分析】
由題意結合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【題目詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選【題目點撥】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標求出結果3、D【解題分析】
設,由,得,利用復數(shù)相等建立方程組即可.【題目詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【題目點撥】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.4、B【解題分析】
利用函數(shù)的單調(diào)性得到的大小關系,再利用不等式的性質(zhì),即可得答案.【題目詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【題目點撥】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.5、D【解題分析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【題目詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【題目點撥】本題主要考查了二項式定理的運算,屬于基礎題.6、C【解題分析】
設,計算可得,再結合圖像即可求出答案.【題目詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結合圖像,,得,所以.故選:C【題目點撥】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結合思想,屬于中檔題.7、B【解題分析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【題目詳解】因為即而所以夾角為故選:B【題目點撥】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎題.8、C【解題分析】
模擬執(zhí)行程序框圖,即可容易求得結果.【題目詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【題目點撥】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎題.9、A【解題分析】
推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【題目詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【題目點撥】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.10、A【解題分析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【題目詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【題目點撥】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.11、A【解題分析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【題目詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【題目點撥】本小題主要考查正方體有關計算,屬于基礎題.12、B【解題分析】
根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【題目詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【題目點撥】本題考查面積型幾何概型的問題求解,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)弦的垂直平分線經(jīng)過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【題目詳解】因為圓經(jīng)過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【題目點撥】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.14、【解題分析】
先化簡集合A,再求A∪B得解.【題目詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【題目點撥】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.15、0【解題分析】
直接根據(jù)向量垂直計算得到答案.【題目詳解】向量與向量垂直,則,故.故答案為:.【題目點撥】本題考查了根據(jù)向量垂直求參數(shù),意在考查學生的計算能力.16、【解題分析】
確定函數(shù)的定義域,求導函數(shù),利用極值的定義,建立方程,結合韋達定理,即可求的取值范圍.【題目詳解】函數(shù)的定義域為,,依題意,方程有兩個不等的正根、(其中),則,由韋達定理得,,所以,令,則,,當時,,則函數(shù)在上單調(diào)遞減,則,所以,函數(shù)在上單調(diào)遞減,所以,.因此,的取值范圍是.故答案為:.【題目點撥】本題考查了函數(shù)極值點問題,考查了函數(shù)的單調(diào)性、最值,將的取值范圍轉(zhuǎn)化為以為自變量的函數(shù)的值域問題是解答的關鍵,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【題目詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【題目點撥】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.18、(1)直線普通方程:,曲線直角坐標方程:;(2).【解題分析】
(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標方程化為,根據(jù)極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數(shù)方程代入曲線的直角坐標方程,根據(jù)參數(shù)的幾何意義可知,利用韋達定理求得結果.【題目詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數(shù)分別為:,則,【題目點撥】本題考查極坐標與直角坐標的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達定理來進行求解.19、(1)證明見解析;(2)【解題分析】
(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結合面面垂直的判定定理,即可證得平面⊥平面;(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【題目詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【題目點撥】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質(zhì)定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1)證明見解析(2)【解題分析】
(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【題目詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【題目點撥】本題主要考查了線面垂直的判定與性質(zhì),考查空間向量與空間角的計算,屬于中檔題.21、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解題分析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【題目詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 停車位建設項目可行性報告
- 大學生讀書心得筆記
- 租房合同范本集錦15篇
- 啟動儀式領導講話稿(集合15篇)
- 手機銷售辭職報告15篇
- 關于小學個人教師述職報告十篇
- 數(shù)學教學心得體會
- 房地產(chǎn)銷售個人工作總結(匯編15篇)
- 幼兒園班主任辭職報告錦集7篇
- 新媒體營銷(第三版) 課件 項目二 新媒體營銷定位與策劃
- 銀行市場份額提升方案
- 鎮(zhèn)海煉化線上測評試題
- 2024寧夏高級電工證考試題庫電工理論考試試題(全國通用)
- 浙江省溫州市2022-2023學年八年級上學期數(shù)學期末試題(含答案)
- 2023年客訴工程師年度總結及下一年計劃
- 廣東省佛山市2022-2023學年三年級上學期語文期末試卷(含答案)
- 網(wǎng)絡運維從入門到精通29個實踐項目詳解
- 2024屆黃岡市啟黃中學中考試題猜想數(shù)學試卷含解析
- 揚州育才小學2023-2024一年級上冊數(shù)學期末復習卷(一)及答案
- 04某污水處理廠630kW柔性支架光伏發(fā)電項目建議書
- 山中初唐王勃1
評論
0/150
提交評論