![安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view11/M00/23/33/wKhkGWWS5BmAWcOzAAH8HY0hoDs847.jpg)
![安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view11/M00/23/33/wKhkGWWS5BmAWcOzAAH8HY0hoDs8472.jpg)
![安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view11/M00/23/33/wKhkGWWS5BmAWcOzAAH8HY0hoDs8473.jpg)
![安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view11/M00/23/33/wKhkGWWS5BmAWcOzAAH8HY0hoDs8474.jpg)
![安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view11/M00/23/33/wKhkGWWS5BmAWcOzAAH8HY0hoDs8475.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安陽市重點(diǎn)中學(xué)2024屆高三4月高三年級(jí)聯(lián)合考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.2.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.3.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+14.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i7.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長度后關(guān)于軸對(duì)稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.8.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.9.已知復(fù)數(shù),滿足,則()A.1 B. C. D.510.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3311.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)12.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為,現(xiàn)按年級(jí)采用分層抽樣的方法抽取若干人,若抽取的高三年級(jí)為12人,則抽取的樣本容量為________人.14.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.15.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.16.直線(,)過圓:的圓心,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.18.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.19.(12分)在中,角,,所對(duì)的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.20.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.21.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.22.(10分)已知在平面直角坐標(biāo)系中,橢圓的焦點(diǎn)為為橢圓上任意一點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線交橢圓于兩點(diǎn),且滿足(分別為直線的斜率),求的面積為時(shí)直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【題目詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【題目點(diǎn)撥】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).2、C【解題分析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱.
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C3、C【解題分析】
首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【題目詳解】當(dāng)n=k時(shí),等式左端=1+1+…+k1,當(dāng)n=k+1時(shí),等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(xiàng)(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【題目點(diǎn)撥】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./4、D【解題分析】
通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【題目詳解】由題可知:所以所以猜想可知:由所以所以故選:D【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.5、D【解題分析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【題目詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【題目點(diǎn)撥】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6、B【解題分析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【題目詳解】,則復(fù)數(shù)z的虛部為.故選:B.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.7、D【解題分析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【題目詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對(duì)稱,所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【題目點(diǎn)撥】本題主要考查正弦型函數(shù)的周期性,對(duì)稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.8、D【解題分析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【題目詳解】.故選:D.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.9、A【解題分析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【題目詳解】解:,,故選:A【題目點(diǎn)撥】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.10、C【解題分析】
依次遞推求出得解.【題目詳解】n=1時(shí),,n=2時(shí),,n=3時(shí),,n=4時(shí),,n=5時(shí),.故選:C【題目點(diǎn)撥】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11、B【解題分析】
由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時(shí)的個(gè)數(shù),即可求解.【題目詳解】,,當(dāng),,,時(shí),為有理項(xiàng),共項(xiàng).故選:B.【題目點(diǎn)撥】本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.12、A【解題分析】
設(shè),因?yàn)椋玫?,利用直線的斜率公式,得到,結(jié)合基本不等式,即可求解.【題目詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,設(shè),因?yàn)椋淳€段的中點(diǎn),所以,所以直線的斜率,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以直線的斜率的最大值為1.故選:A.【題目點(diǎn)撥】本題主要考查了拋物線的方程及其應(yīng)用,直線的斜率公式,以及利用基本不等式求最值的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【題目詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【題目點(diǎn)撥】本題考查了分層抽樣的知識(shí),算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.14、【解題分析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.15、等腰三角形【解題分析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,16、;【解題分析】
求出圓心坐標(biāo),代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【題目詳解】圓:的標(biāo)準(zhǔn)方程為,圓心為,由題意,即,∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故答案為:.【題目點(diǎn)撥】本題考查用基本不等式求最值,考查圓的標(biāo)準(zhǔn)方程,解題方法是配方法求圓心坐標(biāo),“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解題分析】
(1)取中點(diǎn),連,可得,結(jié)合平面EAD⊥平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結(jié)論.【題目詳解】(1)取中點(diǎn),連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點(diǎn),,平面,平面平面,;(2)設(shè)菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【題目點(diǎn)撥】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問題要熟練應(yīng)用等體積方法,屬于中檔題.18、(1),表示圓心為,半徑為的圓;(2)【解題分析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【題目詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【題目點(diǎn)撥】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.19、(1);(2)【解題分析】
(1)利用正弦定理邊化角,結(jié)合兩角和差正弦公式可整理求得,進(jìn)而求得和,代入求得結(jié)果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結(jié)合的范圍可求得結(jié)果.【題目詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【題目點(diǎn)撥】本題考查解三角形知識(shí)的相關(guān)應(yīng)用,涉及到正弦定理邊化角的應(yīng)用、兩角和差正弦公式和輔助角公式的應(yīng)用、與三角函數(shù)值域有關(guān)的取值范圍的求解問題;求解取值范圍的關(guān)鍵是能夠利用正弦定理將邊長的問題轉(zhuǎn)化為三角函數(shù)的問題,進(jìn)而利用正弦型函數(shù)值域的求解方法求得結(jié)果.20、(1)證明見解析;(2).【解題分析】
(1)取中點(diǎn),連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【題目詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)椋矫?,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過N作于E,則平面,因?yàn)槠矫嫫矫妫?,平面平面,平面,所以平面,又因?yàn)槠矫?,所以,由于,所以所以,所?【題目點(diǎn)撥】本題考查線面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.21、(1);(2)【解題分析】
(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計(jì)算b,可得結(jié)果.(2)計(jì)算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【題目詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點(diǎn)B,則BD=DE=EC=1.,所以所以.【題目點(diǎn)撥】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年債權(quán)管理與轉(zhuǎn)讓策劃合同樣本
- 2025年企業(yè)供應(yīng)鏈物流外包項(xiàng)目協(xié)議
- 2025年債權(quán)讓與四方合同策劃范本
- 2025年倉庫管理員職責(zé)與待遇合同
- 2025年具有法律效力的個(gè)人投資對(duì)賭協(xié)議
- 2025年電子點(diǎn)火沼氣燈項(xiàng)目申請(qǐng)報(bào)告模范
- 2025年熱熔膠膠粉及膠粒項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 2025年雙方教育合作框架協(xié)議
- 2025年冬季社會(huì)實(shí)踐活動(dòng)協(xié)議范本
- 2025年教育實(shí)踐基地聯(lián)盟發(fā)展與協(xié)作策劃協(xié)議
- 變電站模塊化建設(shè)2.0版技術(shù)導(dǎo)則
- 無人機(jī)飛行表演合同
- 廣州市2023年中考:《道德法治》考試真題與參考答案
- 爺爺?shù)臓敔斈睦飦恚喝祟惼鹪吹难莼^程
- 欒川光伏扶貧發(fā)電項(xiàng)目部qc成果
- 道路硬化施工方案
- 2023年中國職業(yè)教育行業(yè)市場運(yùn)行態(tài)勢、產(chǎn)業(yè)鏈全景及發(fā)展趨勢報(bào)告
- DB4420-T 7-2021 養(yǎng)老機(jī)構(gòu)突發(fā)傳染病疫情防控規(guī)范
- 四年級(jí)上冊(cè)100道口算題大全(通用版各類)
- 食品安全蔬菜水果
- 高中英語課外閱讀:STRANGE CASE OF DR.化身博士
評(píng)論
0/150
提交評(píng)論